首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

2.
对于单位圆盘上的解析函数f(z),本文定义了f(z)的σ-邻域N_σ(f)及其导数的σ-邻域N′_σ(f),得到了N_σ(f)和N′σ(f)包含于单叶函数的某些子族的条件。推广了A.Kobori的结果:如果f(z)=z sum from k=2 to ∞a_kz~k满足条件sum from k=2 to ∞k~2|a_k|1≤1,则f(z)是凸函数。  相似文献   

3.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

4.
设f(x)∈Lp(Ωn),1≤p≤2,δ>(n-1)(1p-12),σδN(f)(x)表示f(x)在n维球面Ωn上的Cesàro平均.本文证得limN→∞1N+1∑Nk=0|σδk(f)(x)-f(x)|2ak=0 a.e.x∈Ωn.其中权系数ak≥0满足1≤1N+1n[]k=0ak≤A(A是一个绝对常数).  相似文献   

5.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

6.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

7.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

8.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

9.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

10.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

11.
对于剧烈振荡积分转化的级数S=sum from k=0 to +∞(-1)~ka_k,a_k=integral from 0 to 1 f(π/θ(x+k))sinπxdx,该文利用a_t的被积函数的特点,将〔0,1〕区间逐次n_i等分:{n_i}={1,2,3…},n_i=3×2~(i+1)/1(i=2m+1)、n_i=2~(1/2)(i=2m),分别对a_t运用复化Simpson公式导出了逼近S的一系列递推级数S~(i),给出了序列{S~(i)}的收敛性结论和Richardson外推格式,尔后对每个交错级数S~(i)进行了Levin-u方法的加速处理和数值分析。  相似文献   

12.
设Q={(x,y) |-≤x,y<π},△=a~2/ax~2+a~2/ay~2是Laplace算符,函数类△~rH 1, _2(r=0,1,2,……)由C(Q)中有直到2r阶偏导数并满足下述条件的函数f(x,y)组成:记ψ(x,y)=△~r(f)=△(△~r(-1)(f)),(△~o(f)=f),则对任意的-π≤x,x′,y,y′<π,成立着:|ψ(x,y)—ψ(x′,y′)|≤ψ_1(|x—x′|)+ω_2(|y—y′|),其中ω_1(t),ω_2(s)是任意给定的连续模,又f(x,y)∈C(Q),S_i,i(f:x,y)为f的Fourier部分和,而f(x,y)的Vall e-Poussin和是指量σ_(nm)~(kp)(f:x,y)=1/k+1 1/p+l sum from j=0 to sum from i=0 to pSn-j,m-i(f:x,y)文中讨论了量当n.m→∞时的渐近状态,在一定的条件下得到了渐近等式。所得结果是[3]中r=0时结果的推广,同时,简化了[3]中的余项。  相似文献   

13.
算链论原理     
本文所提出的“算链论原理”,是关于传统算式sum from i=k to m A_j,(?)A_j,(?)A_j,(?)A_j,…的共同形式、性质与方法的推广型原理。它不仅为这些传统算式提供了共同的代数表达式(?)A_j((?)f[x+(j+h)r])、(?)f(u)或N_r~mf(u),而且还使这些传统算式摆脱了只有当它们的上下标m,k=0,1,2…,∞,且m≥k时才有运算的局限性。例如,它能使我们在一定条件下更深刻的认识到当k,m,n,h∈Z时,sum from j=1 to m f(j)-sum from j=1 to (m+n) f(j-n)=sum from j=1 to (-m) f(j),sum from j=k to m f(j+h)=-sum from j=h+1 to k+h-m-1 f(j+m),1÷(?)f(j)=(?)f(j),(?)f(j)=1÷(?)f(j+m-k+1),…,建立了一个广阔的可使阶为m-k+1∈Z的(?)A_f的运算领域。  相似文献   

14.
Let q be an integer, f(x)=a_kx~k+…+a_1x+a_0 be a polynomial withintegral coefficients and (a_1,…,a_k,q)=1. Also set Ss(q,f(x))=sum from x=1 to q e~(2πif(?)lq) (1) In 1940, Hua Loo Keng~([1]) first obtained that S(q,f(x))=O(q~(1-1/k+(?))), (2)where the exponcnt 1-1/k is best possible. Since then many mathematicians have sought to improve the constant implied by O in (2). The best two results were obtained by Chen Jing run~([2] and ~[3] in 1977. The result of [2] is  相似文献   

15.
本文讨论耗散方程的混合问题{u-(tt)-△u-μ△u_t=H(▽u,D▽u) (t,x)∈(0,T)×Ωu(0,x)=f(x),u_t(0,x)=g(x) ■通过适当的函数变换,运用凸性方法证明了当H(▽u,D▽u)≥ρu_t~2+q sum from i=1 to n u_(x_1)~2++μ(?)u_t sum from i=1 to n u_(x_i)~2+u(q-2)sum from i=1 to m u_(x_1)u_(tx_1)(这里ρ>0,q>0)及integral from Ωe~(qf(x))g(x)dx>0时,所考虑混合问题的光滑解在有限时间内爆破.  相似文献   

16.
利用李中凯导出的点态等价收敛定理,给出一个充分条件,在此条件下,函数f(x)的雅克比展开的临界阶蔡沙罗平均S_n~(d+1/2)(f;x)关于任何正阶蔡沙罗方法和正指标是强可和的(或强收敛的),即(?)(1/(A_n~σ))sum l=0 from to n(A_(n-l)~(σ-1)|S_l~(α+(1/2))(f;x)-B|~q=0,其中A_n~σ=Г(n+σ+1)/(Г(σ+1)Г(n+1)),B是某常数,而σ>0,q>0.  相似文献   

17.
设(X,Y)为d×1随机向量,f(x,y)为其概率密度函数,(X_i,Y_i) i=1,2,…,n为抽自f的i. i. d. 样本,m(x)(?)E(Y|X=x)称Y对X的回归函数。Watson (1964),Nagaraya (1964)提出用m_n(x)=sum from i=1 to n (Y_iK(?))/sum from i=1 to n (K((x-X_i)/h_n))估计m(x),其中K(x)为R~d上的概率密度,h_n>0,h_n→0(n→∞),这种估计称核估计。引入记号:ω(x)(?) integral from R~1 to ∞(yf(x,y)dy),g(x)(?) integral from R~1 to ∞(f(x,y)dy),又ω_n(x)(?)1/(nh_n~d) sum from i=1 to n (Y_iK)((x-X_i)/h_n),g_n(x)(?)1/(nh_n~d) sum from i=1 to n (K((x-X_i)/h_n)),它们分别是ω(x)和g(x)的估计。则m(x)=ω(x)/g(x),m_n(x)=ω_n(x)/g_n(x)(约定0/0=0)。当d=1时,E. Schuster和S. Yakowitz(1979)证明了在一组条件下,存在常数c>0,他对(?)ε>0,当n充分大时,其中,  相似文献   

18.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

19.
关于亚纯函数的正规增长性   总被引:4,自引:0,他引:4  
本文得到了如下结果:设 f(z)是开平面上的亚纯函数,a_i(z)(i=1,2,…,n(f),n(f)≤∞)为满足 T(r,a_i(z))=o{T(r,f)}的亚纯函数,如果 sum from i=1 to n(f) δ(a_i(z),f)=2;且存在 a_k(z)(1≤k≤n(f))有δ(a_k(z),f)=1,则 f(z)是正规增长的.且当 f(z)的下级无穷时其级为正整数.  相似文献   

20.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号