首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
瓦斯爆炸气相爆轰参数的数值计算与分析   总被引:5,自引:0,他引:5  
结合所建立的掘进巷道瓦斯爆炸的物理模型,当已知瓦斯聚积位置、体积和浓度时,利用Hugoniot方程和Rayleigh方程推导出了瓦斯爆轰参数的公式。同时,给出了在瓦斯强爆轰、弱爆轰和瞬时爆轰三种情形下的气相爆轰参数的表达式。利用爆轰波理论和流体动力学理论对算例进行验证,并且对结果进行了讨论和分析后认为,爆轰产物组分与温度和压力密切相关,在对爆轰波参数进行精确计算时,需要考虑爆轰温度和压力条件。  相似文献   

2.
半封闭空间瓦斯爆炸冲击波传播距离研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为揭示瓦斯在强爆和弱爆情况下冲击波超压变化规律,利用一维爆炸物理模型和爆炸理论,构建了冲击波超压随距离变化的数学模型,并用一端开口的半封闭爆炸试验装置,在保持瓦斯浓度和其他条件不变,仅改变点火能量大小实现了瓦斯爆燃和爆轰,验证理论求解.结果表明:半封闭受限空间内,爆燃情况下火焰传播速度要远小于爆轰条件下火焰传播速度,爆燃火焰传播速度为亚音速,爆轰为超音速;爆轰与爆燃的冲击波超压的理论解都小于实验值,但整个传播变化趋势基本一致;极强冲击波最大超压值与传播距离成反比,极弱冲击波最大超压值与传播距离的平方根成反比;爆燃和爆轰冲击波在燃烧区内的传播变化趋势与理论解基本吻合.研究结果为防治瓦斯爆炸破坏及爆炸事故灾害勘验提供了技术和理论支持.  相似文献   

3.
初始压力对爆轰波在管道内传播的影响   总被引:3,自引:0,他引:3  
建立爆轰管道研究不同初始压力下爆轰波在管道内传播规律.选用CH4+2O2气体,采用光纤探针测量爆轰波在管道内的传播速度,采用烟迹法记录爆轰波胞格结构.结果表明:爆轰波在管道内传播时出现5种不同传播模式,分别为稳态式、快速波动式、结巴式、驰振式与失效模式.在稳态传播模式下,爆轰波局部速度波动很小且平均速度接近理论爆轰CJ速度,并呈现多头胞格结构.随着初始压力的降低,爆轰波局部速度波动增加且其平均速度产生衰减.在驰振式爆轰解耦处,爆轰波胞格结构消失,过载爆轰时,重新形成胞格结构.进一步降低初始压力至爆轰失效时,则无胞格结构.  相似文献   

4.
浓度梯度对瓦斯爆炸影响的数值模拟   总被引:2,自引:2,他引:0  
针对煤矿巷道中存在瓦斯浓度梯度的问题,基于时间上的TVD Runge-Kutta格式,空间上的5阶加权本质无振荡(WENO)格式离散控制方程组,自主研发了高精度大规模的并行计算程序. 利用该程序模拟了煤矿巷道中的爆轰波的传播过程. 研究结果得出了纵向和横向浓度梯度对瓦斯爆炸的影响规律,模拟结果与理论分析结果基本吻合.   相似文献   

5.
为研究混合气体爆轰问题,通过利用冲击爆轰专业计算工具箱SD_Toolbox和开源的化学反应动力学计算代码Cantera研究了气体C-J爆轰参数计算方法与规律。结果表明:将SD_Toolbox和Cantera耦合可以进行混合气体爆轰问题的C-J爆轰参数计算;以H_2/O_2、CH4/O_2和C_2H_2/O_2三种不同的混合气体组分为例,在化学反应比初始条件下,分别计算了其C-J爆轰参数;通过与文献中结果的比较,验证了计算的准确性。可见,基于SD_Toolbox和Cantera可以进行气体C-J爆轰参数规律分析,包括初始温度、初始压力和爆炸气体浓度对爆轰产物压力、密度、温度和爆轰波速的影响规律等。  相似文献   

6.
气相爆轰波贯穿胞格变化研究   总被引:1,自引:0,他引:1  
根据气相爆轰波胞格结构的规则特则特性建立一种以子单元分解胞格结构的新方法,根据该子单元的性质和斜冲击波关系,求解胞格结构中的三波点对撞问题,并推导贯穿胞格时,爆轰速度的相对波动幅度仅依赖于胞格几何形状的关系,然后,采用爆炸波衰减模型,计算气相爆轰波贯穿胞格时的衰减过程,计算结果与实验符合得较好。  相似文献   

7.
用实验测得两种直径的压装TNT药柱二维定常爆轰波的爆速和前导冲击波形状,利用二维C-J条件和守恒关系式求得其压力和反应度沿流线的变化曲线,从而研究压装TNT二维定常爆轰波反应区的流场性态,这对于爆轰理论发展和精密装药设计都是很重要的.  相似文献   

8.
为了研究巷道内瓦斯爆炸冲击波对巷道壁面结构的损伤破坏,利用ANSYS/LS-DYNA建立巷道瓦斯爆炸物理模型和数学模型,对掘进巷道瓦斯爆炸冲击波破坏特性进行数值模拟研究。结果表明:在巷道壁面边缘位置和中心位置超压测值较大,其壁面损伤相对更为严重;冲击波在巷道轴向壁面也会出现反射和叠加,导致整体超压峰值上下振荡波动;瓦斯爆炸后冲击波向开口方向传播,瓦斯区壁面受到的载荷最大,并逐渐向空气区加载扩散;随着爆炸冲击波能量衰减,而应力持续加载在壁面结构,压力集中对壁面结构施加静态破坏,最后超过其承受能力,导致巷道失稳破坏。研究结果可为优化巷道结构的设计提供理论参考。  相似文献   

9.
对气相爆轰波在衬有多孔钢板管道中的传播进行了实验研究. 结果表明, 多孔钢板对气相爆轰波的传播有衰减作用;同时它所产生的紊流作用又能使已衰减的爆轰波在一定程度上得到恢复.  相似文献   

10.
针对大型煤矿瓦斯运输管道甲烷爆轰过程中火焰压力波和速度与阻火器结构的匹配问题,对阻火器壳体结构变化与管道内火焰压力和速度的关系进行了仿真研究,仿真中对不同尺寸的阻火器壳体结构建立了二维几何模型和网格模型,采用RNC k-e湍流模型和通用有限速率燃烧模型,运用FLUENT软件对煤管内可燃气体爆轰过程进行了模拟.得到了阻火器壳体内径尺寸、阻火器内有无障碍物与爆轰火焰压力和速度的变化规律,通过分析阻火器内火焰速度和压力的规律,为管道爆轰阻火器的设计和选型提供更为准确的参考依据.  相似文献   

11.
掘进巷道瓦斯爆炸数值及实验分析   总被引:2,自引:0,他引:2  
应用爆炸理论和质量、动量、能量守恒定律,针对掘进巷道瓦斯爆炸建立了物理模型和数学模型,在此基础上分析了掘进巷道瓦斯爆炸的条件和可能性.运用Autoreagas数值分析系统对掘进巷道置障条件下瓦斯与空气混合气体的燃烧爆炸进行分析和研究.结果表明,障碍物的存在使得密度升高的幅度大大增加,混合气体超压加大,激波波动剧烈,温度、混合气体流动速度以及爆炸过程中燃烧速度产生不规则波动、振荡和变化.实验分析和对比表明,瓦斯聚积量大,则发生瓦斯爆炸后产生的超压将大幅度升高,平均超压将升高到聚积量小的超压的2倍,最大超压则升高到聚积量小的超压的2.5倍.通过对照分析,数值计算的数据与实验获得的数据比较接近,证明数值模拟的合理性.  相似文献   

12.
CFD数值方法是目前海上浮式设施爆燃冲击研究中得到广泛运用的方法.文中以某FLNG工艺区发生爆燃事件为研究背景,基于通用CFD软件CFX对蒸气云爆炸进行数值分析,提出了基于能量释放方程模拟分析的冲击波安全评价方法,并对能量和能量释放时间两个变量对爆燃冲击强度的敏感性进行研究.该冲击波后果评价方法通过在爆心位置设立以能量大小和能量释放时间为变量的step函数,选定k-ε模型,模拟爆炸冲击获得超压数据,并结合超压伤害准则和TNO爆炸源能量和气云体积的转换关系对冲击波伤害后果进行评价.研究表明:基于CFD的能量释放方程能够很好的模拟爆炸冲击波并获得表征冲击强度的超压数据.方程中变量因素对冲击强度影响显著,特别是爆炸近场区域.提出的安全分析方法可以有效地对爆炸冲击后果进行评价.  相似文献   

13.
对爆炸喷涂燃烧室爆轰波的形成及爆轰产物热力学及动力学参数进行了数值计算.结果表明,爆炸喷涂气相爆轰系统爆轰特性主要取决于气相系统的选择和初始混合气体配比.C2H2 O2气相爆轰系统更适合于喷涂高熔点的陶瓷、金属陶瓷及纳米复合陶瓷粉体,其最优化工艺参数应该选择在零氧平衡附近.而H2 O2气相爆轰系统则适用于喷涂低熔点的金属及其合金,金属粉体的熔点越高,最优化参数越接近于零氧平衡点.  相似文献   

14.
脉冲爆震发动机热力循环性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了混合气体中燃烧产生的爆震波的传播机理,建立了爆震波传播过程中参数的基本关系。在不同进气增压比条件下,对爆震波的特性参数进行了计算,得出了爆震波前后气流参数的变化关系;并计算了爆震燃烧循环过程的热效率和爆震燃烧不可逆过程中熵增随爆震波前马赫数的变化规律。最后将爆震燃烧循环与布莱顿循环、甘福利循环进行比较,结果表明:爆震燃烧循环具有更高的有效循环功和循环热效率。  相似文献   

15.
为有效抑制瓦斯爆炸冲击波及火焰传播,构建大尺度圆形管道实验装置,对瓦斯预混爆炸过程中泡沫陶瓷对冲击波和火焰传播抑制特性进行研究.结果表明:泡沫陶瓷能够吸收瓦斯爆炸冲击波能量,对火焰和冲击波传播抑制效果明显,泡沫陶瓷挡板厚度及设置层数、位置是典型影响因素.挡板设置位置距点火端距离十分重要,其临界值应为起爆期间火焰传播速度达到最大值位置以内,进而实现对瓦斯爆炸传播与发展的有效抑制.对比双层和单层挡板布置的实验结果,双层布置时冲击波最大超压下降更快.但是,挡板厚度的影响并不明显.设置厚度为50 mm或30 mm的挡板时,测得最大超压的沿程衰减趋势一致,大小也很相近.  相似文献   

16.
一维平面对称爆轰波的推进具有周期性.其冲击波前沿(该处未发生化学反应)对于波后是亚音速的,由于后续扰动不断追上而衰减.炸药微元被冲击波压缩和加热,经过延迟期,由快速放热而形成冲击波,称为"化学冲击波",追上原冲击波前沿,使之增强到初始强度,至此完成一个周期.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号