首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
高压水射流破岩钻孔过程的理论研究   总被引:3,自引:1,他引:3  
对高压水射流破岩钻孔的试验结果、岩石内孔隙流体的运动规律以及水射流破岩过程中的能量分布变化趋势进行了分析 ,对高压水射流破岩钻孔过程进行了系统的研究。研究结果表明 ,高压水射流破岩钻孔过程分为两个阶段 ,初期以应力波作用为主 ,形成岩石损伤破坏的主体 ;后期以射流准静态压力作用为主 ,主要是使岩石孔眼直径扩大。水射流破岩钻孔过程中射流和岩石的相互作用以界面耦合为主 ,水射流的冲击载荷在岩石内产生的应力波和射流准静态压力共同作用使岩石破碎 ,其中应力波的作用占主导地位。  相似文献   

2.
高压水射流破岩钻孔过程的理论研究   总被引:6,自引:1,他引:6  
对高压水射流破岩钻孔的试验结果、岩石内孔隙流体的运动规律以及水射流破岩过程中的能量分布变化趋势进行了分析,对高压水射流破岩钻孔过程进行了系统的研究。研究结果表明,高压水射流破岩钻孔过程分为两个阶段,初期以应力波作用为主,形成岩石损伤破坏的主体;后期以射流准静态压力作用为主,主要是使岩石孔眼直径扩大。水射流破岩钻孔过程中射流和岩石的相互作用以界面耦合为主,水射流的冲击载荷在岩石内产生的应力波和射流准静态压力共同作用使岩石破碎,其中应力波的作用占主导地位。  相似文献   

3.
岩石圆环试件拉张破裂结构演化有限元模拟   总被引:1,自引:0,他引:1  
岩石具有低抗拉特性,抗拉强度控制着岩体工程的整体稳定性.利用有限元方法,对岩石圆环试件拉张破裂过程的结构演化过程进行了研究.模拟结果显示:圆环结构受拉应力作用发生破裂,形成不连续面;圆环在拉应力作用下不断形成破裂面,结构形式相应发生演化,并导致应力状态改变,最终圆环结构内壁上下、外壁左右全部开裂,系统不稳定、丧失承载能力,完全破坏.将有限元模拟结果与实验结果对比二者相吻合,可为研究岩石的破裂规律及裂纹扩展提供新的研究方法.  相似文献   

4.
在对花岗岩岩样进行常规三轴加载试验的基础上,进行了峰前高应力条件下卸围压并维持q=σ1-σ3不变的花岗岩卸荷破坏试验,研究卸荷条件下花岗岩的变形、破裂特征,强度准则.结果表明:1)常规三轴破坏以轴向变形为主,卸荷破坏以径向变形为主,卸荷破坏特征以向卸荷方向发生径向变形和体积扩容为主,卸荷状态下脆性特征较加载状态下明显.2)在加载试验中,岩石基本上表现为剪切破坏,张性破裂成分很少.卸荷破裂时各种级别的张裂隙发育,剪性破裂面以共轭X或局部剪切破坏为主.3)在初始围压相同情况下,卸荷点越大,岩样从卸围压至破坏的时间越短,说明高卸荷点更容易导致岩石破坏.4)Mogi-Coulomb强度准则适合描述花岗岩高应力强卸荷作用破坏下的岩石强度特征.  相似文献   

5.
岩石具有低抗拉特性,抗拉强度控制着岩体工程的整体稳定性.利用有限元方法,对岩石圆环试件拉张破裂过程的结构演化过程进行了研究.模拟结果显示:圆环结构受拉应力作用发生破裂.形成不连续面;圆环在拉应力作用下不断形成破裂面,结构形式相应发生演化,并导致应力状态改变,最终圆环结构内壁上下、外壁左右全部开裂,系统不稳定、丧失承载能力,完全破坏.将有限元模拟结果与实验结果对比二者相吻合,可为研究岩石的破裂规律及裂纹扩展提供新的研究方法.  相似文献   

6.
基于声发射定位技术和矩张量分析方法,对在单轴加载条件下岩石破裂过程中的裂纹破裂机制及时空分布特征进行试验研究.借助CAD软件展示不同破裂机制的声发射事件,直观反映裂纹破裂类型.研究结果表明:单轴压缩加载试验中,花岗岩试样破裂以剪破坏为主,但岩石微裂纹的破裂类型所占比例并不固定,岩石内部微裂纹破裂类型与岩石材料的力学环境有关;花岗岩作为一种脆性岩石,破裂不符合格里菲斯强度准则认为的脆性材料都是拉伸破坏的基本观点,证明格里菲斯强度准则对于均质度不高的脆性岩石的适用性有一定的局限;花岗岩单轴压缩试验中,试样的破坏类型与其应力水平没有关系,3种类型的声发射事件随应力增大的变化趋势相似.  相似文献   

7.
选取花岗岩,开展三点弯曲和剪切加载条件下声发射试验,采用单纯形算法与矩张量理论分析了不同破裂类型微裂纹的时空分布特征.研究结果表明:在加载过程中,三点弯曲试样总体上以张拉型破裂为主,岩石最终破坏时,张拉型裂纹所占比例超过50%;剪切试样以剪切型破裂为主,最终剪切型裂纹所占比例超过60%.声发射事件的群集区域和矩张量分析结果与最终的岩石破裂结果相一致,说明矩张量理论能够定量描述岩石在加载过程中张拉应力、剪切应力的分布和迁移规律,这为岩石破裂过程中微裂纹的相互作用和贯通机制提供了良好的分析手段.  相似文献   

8.
循环冲击载荷作用下砂岩破坏模式及其机理   总被引:3,自引:0,他引:3  
利用岩石动静组合加载SHPB试验装置对不同静载砂岩试件进行循环冲击试验,研究其破坏模式.在研究岩石试件界面摩擦力的基础上,对不同静载作用下岩石试件的应力状态进行分析.研究应力波斜入射到微裂纹时的作用效应,探索具有一定静载的岩石在循环冲击作用下的破裂机理.研究结果表明:对具有三轴静载的试件,应力波在其最大剪应力所在平面进行斜入射时优先破坏.在循环冲击载荷作用下,具有轴向静载的岩石在破坏过程中具有明显的端部效应,而没有轴向静载的岩石则没有端部效应;静载荷的组合形式对岩石在循环冲击作用时的破坏模式影响较大;无静载荷作用时,岩石在循环冲击时逐步破坏成几块,破裂面平行于纵向面,属于张应变破坏;只有轴向静载作用时,岩石试件第1次破坏形成共轭双曲线型破裂面,进而在入射界面处发生破坏,破坏都属于张剪破坏;具有三轴静载作用时,由于轴向静载的不同,岩石最终破坏成圆锥台、圆锥体和V型锥体,破坏属于拉剪破坏.  相似文献   

9.
根据煤系岩石加载破坏过程中的电磁辐射信息与其受载变形破坏过程的相关关系,分析了煤系岩石脆性破裂前的电磁辐射信号突增现象.通过试验数据和用岩石破坏重整化群理论系统研究岩石破裂前临界点的电磁辐射信息识别条件.单轴荷载条件下,临界点对应的应力和岩石峰值应力比值在其临界比大都在70%与80%之间,均值75%左右,误差在±9%以内,表明岩石内部微裂纹的形成与原有裂纹的扩展是电磁辐射活动的主要原因.上述研究可为煤岩动力灾害防治提供有力的依据.  相似文献   

10.
相山矿田居隆庵铀矿床成矿物理化学条件分析   总被引:3,自引:0,他引:3  
目的了解相山矿田居隆庵铀矿床成矿物理化学性质及其背景。方法应用岩石化学及铷、锶、硫、氧等同位素地质及包裹体研究方法。结果含矿主岩碎斑熔岩岩石形成的初始岩浆起源于上地幔,在上升过程中混染并重熔了地壳组分;成矿热液起源于深部岩浆热液,在沿构造上升过程中混合了浅部地下水溶液,形成了一种混合热液。结论成矿热液物理化学性质为弱酸、弱还原性的中低温热液,成岩成矿物质既来源于深部(上地幔),又有浅部物质的混合。  相似文献   

11.
采用数值模拟方法从不同地应力组合方式入手探究了地应力对岩芯饼化的影响.研究表明:当地应力超过一定值时,出现岩芯饼化现象,即高地应力才会引起岩芯饼化;当径向应力达到35 MPa时,岩芯开始出现饼化现象,径向应力是影响岩芯饼化的主要因素,而轴向应力仅使岩芯表面产生局部破坏;径向应力一定的情况下,随着轴向应力的增大,岩芯饼化逐渐减弱;岩芯饼化的形成过程以剪切破坏为主,并伴有少量的拉破坏;岩芯饼化现象的发生是一个复杂的力学过程.  相似文献   

12.
塔东热液地质作用机制及对储层的改造意义   总被引:1,自引:0,他引:1  
塔东地区断裂发育,早期发育的断裂与晚期断裂之间存在相互改造、叠加、复合的过程,深大断裂沟通多套地层,断裂活动期形成的挤压破碎带和断裂裂缝带作为岩浆热液上升通道,为热液溶蚀作用改造储层提供了有利条件,因此,识别出热液期次对塔东白云岩储层成因机制具有重要意义。通过对钻井岩芯、岩屑及岩石薄片、铸体薄片观察鉴定分析,在区内下古生界碳酸盐岩中识别和发现了钠长石化作用和自生羽毛状伊利石沉淀,也是塔里木盆地内的首次发现,并通过对包裹体均一温度,碳氧同位素等地化特征研究,揭示其成岩流体源于岩浆热液,丰富了区内热液作用的矿物学标志,进一步识别出区内存在3期热液作用,通过对3期热液作用的机制及其储渗空间意义的研究,总结出第I期热液作用对于储层形成意义不大,第Ⅱ期热液作用主要发育在局限的沉积环境,第Ⅲ期热液溶蚀形成溶蚀缝孔洞,与天然气运移聚集匹配良好,构成了区内天然气聚集成藏的主要储渗空间。  相似文献   

13.
常规页岩气储层改造工艺为套管射孔与多级压裂改造相结合,施工成本高、周期长,若实施水平井段裸眼完井可一定程度降低成本、缩短周期,但水平裸眼井段井壁稳定是实施裸眼完井的前提条件。通过对威荣地区龙马溪组页岩水理化及力学性能进行实验研究,结合建立的裸眼完井理论模型评价威荣地区页岩水平段裸眼完井井壁稳定性。结果表明,龙马溪组页岩为脆性层理页岩,岩体较为致密,力学强度高,力学各向异性明显;现场油基、水基钻井液对岩石膨胀性能及力学性能的改变不明显,现场所用钻井液与该地层配伍程度高;井眼轨迹、层理缝走向、力学各向异性等可对裸眼井段稳定性产生影响,致使不同方向井筒内应力差异明显,沿最小水平主应力方向钻水平井井壁稳定性最好,完井工况下井壁坍塌压力当量密度在1.26 g/cm3,完井投产初期井壁存在轻微崩落掉块,但崩落范围小于30 °,判断认为威荣区块龙马溪组页岩地层可考虑采用水平井裸眼完井方式。  相似文献   

14.
基于摩擦效应的砂岩裂缝密度定量预测   总被引:2,自引:1,他引:1  
以挤压型盆地内低渗砂岩储层为研究目标,研究应力场与裂缝参数的关系,通过岩石力学实验与理论推导相结合的方法,建立一套基于考虑裂缝面摩擦耗能的裂缝密度定量预测方法。研究表明:岩石变形准则与能量转换法相结合是建立应力场和裂缝参数力学模型的有效途径,当岩石内部应力状态超过破裂条件后,裂缝密度随应变能密度的增加而增大;裂缝的形成除了要克服岩石内在的黏聚力外,还要克服围压与摩擦效应形成的阻力,可使用库仑-莫尔破裂准则进行岩石破裂判别,进而明确应力-应变与岩石产生裂缝密度的数学关系。所建立的模型应用于准西北缘低渗砂岩裂缝密度预测取得了良好的效果。  相似文献   

15.
对油田开发分层地应力进行弹性力学分析 ,建立了分层地应力三维弹性力学计算模型 .分析模型综合考虑了垂向地应力与岩石特性对破裂压力的影响 ,给出考虑垂直应力影响的最小地应力计算公式 ,结果可用于油田开发设计 .另外 ,分别考虑地层垂向压力和岩石变形特性的影响 ,采用控制最小周向应变参数得到了井眼岩石破裂的准则 .  相似文献   

16.
针对稠油油藏注蒸汽过程中储层的热伤害问题,研究了稠油油藏热采过程注入的高温、高pH 热流体对储层 渗透率的影响,研究中利用正反向流动实验方法,研究了高温冷凝液注入疏松砂岩后引起的微粒运移作用及储层渗透 率的变化特征;并利用储层矿物的水热反应实验,分析了疏松砂岩油藏注蒸汽开发过程中的微粒运移机理。实验结果 表明,注蒸汽过程中,稠油油藏储层渗透率随温度及pH 值的升高而降低。高速流动的蒸汽及冷凝液造成储层内固相 微粒的运移及滞留,使储层非均质性进一步加剧;同时,高温、高pH 的蒸汽冷凝液既促使黏土矿物发生膨胀又造成储 层矿物发生溶解与转化,从而进一步加剧了稠油油藏疏松砂岩储层的储层热伤害。  相似文献   

17.
首先,通过岩石受力破坏过程分析给出了岩块的强度参数与岩块破坏时形成的贯穿裂隙强度参数的关系.在此基础上,通过理论推导给出了结构面强度曲线和岩块强度曲线的位置关系,揭示了三轴压缩试验中,在低围压下岩体通常沿结构面破坏,而在高围压下岩体经常沿岩块剪切破坏的机理,并给出了由结构控制转换为应力控制的临界围压的解析解.其次,揭示了在岩体开挖中,岩体破坏的结构控制与应力控制的转换机理,给出了结构控制转化为应力控制的临界初始应力的解析解.算例表明,模型可以有效解释岩体力学行为的结构控制与应力控制的转换机理.  相似文献   

18.
考虑了渗流体积力、岩体应变软化、破裂膨胀性重要因素,应用弹塑性力学理论,推导了渗流场作用下巷道围岩的应力和位移分布规律,给出了巷道围岩不同分区范围与孔隙水压力、岩体应变软化程度、破裂膨胀性之间的关系;研究表明,孔隙水压力和岩体破裂膨胀特性对巷道围岩破裂区范围的影响程度比对塑性区范围的影响程度明显;考虑渗流场比不考虑渗流场的影响时,塑性区范围和破裂区范围都要大;岩体应变软化程度对巷道围岩塑性区和破裂区的范围影响同样显著;渗流、应变软化、破裂膨胀性对巷道围岩变形的影响都比较明显。研究成果为渗流场作用下的巷道支护工程有一定的参考价值。  相似文献   

19.
由于物理实验受到实验条件、数量的限制,难以对裂缝扩展规律开展大规模的研究。因此,在有了一定的岩石力学测试、页岩压裂破裂方式测试以及页岩压裂裂缝扩展物模试验的基础上,开展了页岩压裂裂缝起裂及扩展规律数值模拟研究。基于流固耦合Biot固结理论、Darcy渗流定律,采用最大拉伸强度准则和Mohr Coulomb准则损伤阈值进行单元损伤判断,引入全新的材料分布算法,建立了水力压裂裂缝扩展的有限元计算模型。进行了岩石样本的参数标定试验。采用有限元计算方法研究了地应力、页岩脆性指数、压裂液黏度和层理特征等关键物理参数对页岩裂缝扩展的影响。结果表明,当脆性指数较小时,水力裂缝主要沿最大主应力方向在页岩基质中扩展,难以转向形成复杂缝网。层理胶结强度较高时,水力作用即便在局部压开天然层理,也难以持续以大角度偏离,而只能形成比较单一的裂缝。地应力比、压裂液黏度越低,层理密度等特性越高时,裂纹网络越复杂。  相似文献   

20.
在深部高地应力地层中取心,岩心层裂(饼化)是一种常见的工程现象。岩心层裂和岩体的物性、力学性质以及原地应力密切相关。为研究钻井取心过程中岩心层裂现象的机理,结合川西南部地区A井和B井取心过程中的岩心层裂现象,考虑岩石矿物组分与岩石脆性指数的关系,基于应力集中的非均匀岩石拉伸破坏模型,给出了岩心层裂现象产生的判据,采用理论计算和数值模拟方法对饼化现象进行了验证。研究结果表明:脆性矿物含量越高,岩石脆性越强,越易生成裂缝;岩心套取是一个卸载水平方向最大主应力的过程,卸载速度越快,损伤处的附加拉应力越大,且对应被激活损伤的尺寸就越小,当附加拉应力大于岩石抗拉强度时,会出现岩心层裂现象,随着取心的继续此过程将重复地发生下去。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号