首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
密度峰值聚类算法(Denisity peaks clustering,DPC)具有聚类速度快、实现简单、参数较少等优点,但该算法的截断距离参数需要人工干预,并且参数的选取对于该算法的结果影响较大。为了解决这一缺陷,该文提出了结合蝙蝠算法改进的密度峰值聚类算法。该算法利用蝙蝠算法较强的寻优能力,寻找合适的截断距离取值,同时对蝙蝠算法的速度更新公式加入了自适应惯性权重来加强全局搜索能力。该算法选择多种数据集进行了实验仿真,并与其他同类算法进行对比。经过对比验证,结合蝙蝠算法改进的密度峰值聚类算法在聚类准确率上要明显优于其他算法。  相似文献   

2.
针对密度峰值聚类(DPC)算法在处理结构复杂、 维数较高以及同类中存在多个密度峰值的数据集时聚类性能不佳的问题, 提出一种基于K近邻和多类合并的密度峰值聚类(KM-DPC)算法. 首先利用定义的密度计算方法描述样本分布, 采用新的评价指标获取聚类中心; 然后结合K近邻思想设计迭代分配策略, 将剩余点准确归类; 最后给出一种局部类合并方法, 以防将包含多个密度峰值点的类分裂. 仿真实验结果表明, 该算法在22个不同数据集上的性能明显优于DPC算法.  相似文献   

3.
密度峰值聚类算法(density peaks cluster,DPC)是一种基于密度的聚类算法,该算法可以聚类任意形状的类簇.在类簇间有密度差距的数据集上,DPC不能准确地选择聚类中心.DPC的非中心点分配策略会引起连续错误,影响算法的聚类效果.模糊k近邻密度峰值算法(fuzzy k-nearest neighbor DPC,FKNN-DPC)是一种改进的DPC算法,该算法采用边界点检测并结合2步分配策略来避免连续错误.当类簇间有密度差距时,FKNN-DPC的边界点检测效果不理想,此外,其非中心点分配策略缺乏对样本近邻信息的考虑.定义相对密度(relative density)并结合近邻关系(nearest neighbor relationship)提出RN-DPC算法解决上述问题.针对DPC因为类簇间的密度差距而不能准确选择聚类中心的问题,定义相对密度用于消除类簇间的密度差距.基于反向k近邻关系检测边界点并且引入共享最近邻关系来对FKNN-DPC的分配策略进行改进.RN-DPC算法在人工数据集和真实数据集上分别与不同的聚类算法进行了对比,实验结果验证了RN-DPC算法的有效性和合理性.  相似文献   

4.
对密度峰值聚类算法进行有效改进,计算各样本点之间的距离和各样本点局部密度,选择两者中较大的样本点作为聚类中心点,根据其余样本点与各中心点的距离设定样本点所属类别;引入K近邻算法对密度峰值聚类算法进行优化,求解各样本点的距离时只需要考虑其周围由邻近值决定的若干样本点,实现距离阈值的自动选取;根据距离矩阵计算样本点的密度,绘制决策图并选择簇内中心点,将剩余点根据密度值分配给离中心点距离最近的类;最后将K近邻-密度峰值聚类算法部署至Hadoop云计算平台,用于解决大规模数据聚类的问题。仿真结果表明,通过合理设置K近邻算法的近邻值k,K近邻-密度峰值聚类算法具有较好的大数据样本聚类性能,与常用聚类算法相比,该算法具有更高的聚类准确率和聚类效率,适用于大数据样本聚类。  相似文献   

5.
密度峰值算法依赖于欧式距离实现局部密度的选择,该算法在处理高维数据、存在密度不均匀的类簇的数据集上效果不是很理想.针对以上问题,提出一种融合流形距离与标签传播的改进密度峰值聚类算法(improved density peak clustering combining manifold distance and labe...  相似文献   

6.
快速搜索与发现密度峰值聚类(clustering by fast search and find of density peaks, DPC)算法对聚类中心点进行了全新的定义,能够得到更优的聚类结果。但该算法需要手动选取聚类中心,容易出现多选、漏选聚类中心的问题。提出一种自动选取聚类中心的密度峰值聚类算法。将参数积γ引入新算法以扩大聚类中心的选取范围,利用KL散度的差异性度量准则对聚类中心点和非聚类中心点进行清晰划分,以Dkl排序图中的拐点作为分界点实现了对聚类中心的自动选取。在人工以及UCI数据集上的实验表明,新算法能够在自动选取聚类中心的同时,获得更好的聚类效果。  相似文献   

7.
一种基于流形距离的迭代优化聚类算法   总被引:3,自引:1,他引:3  
针对传统欧氏距离测度描述复杂结构的数据分布会失效的问题,引入能有效反映样本集固有的全局一致性信息的流形距离作为样本间相似度度量测度,并设计了反映类内相似度大、类间相似度小的聚类目标的准则函数,把数据聚类转化成准则函数优化问题,提出了一种迭代优化的聚类算法.通过4个人工数据集的仿真试验结果表明,新方法的参数很少且实现简单,由于实现过程中没有引入随机操作,因此结果比较确定.与标准k均值算法相比,新方法能够自动确定聚类数目,对于样本空间分布复杂的聚类问题具有良好的分类效果.  相似文献   

8.
密度峰值聚类(Clustering by Fast Search and Find of Density Peaks, DPC)算法是一种新型的基于密度的聚类算法,通过选取自身密度高且距离其他更高密度点较远的样本点作为聚类中心,再根据样本间的局部密度和距离进行聚类。一方面,虽然DPC算法参数唯一、简单、高效,但是其截断距离的取值是按经验策略设定,而截断距离值选取不当会导致局部密度和距离计算错误;另一方面,聚类中心的选取采用人机交互模式,对聚类结果的主观影响较大。针对DPC算法的这些缺陷,目前的改进方向主要有3个:改进截断距离的取值方式、改进局部密度和距离的计算方式以及改进聚类中心的选取方式。通过这3个方向的改进,使得DPC过程自适应。本文对DPC算法的自适应密度峰值聚类算法的研究现状进行比较分析,对进一步的工作进行展望并给出今后的研究方向:将DPC算法与智能算法有机结合实现算法自适应,对于算法处理高维数据集的性能也需要进一步探索。  相似文献   

9.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

10.
密度峰值聚类(clustering by fast search and find of density peaks, DPC)算法是一种基于密度的聚类算法,它可以发现任意形状和维度的类簇,是具有里程碑意义的聚类算法。然而,DPC算法的样本局部密度定义不适用于同时发现数据集的稠密簇和稀疏簇;此外,DPC算法的一步分配策略使得一旦有一个样本分配错误,将导致更多样本的错误分配,产生“多米诺骨牌效应”。针对这些问题,提出一种新的样本局部密度定义,采用局部标准差指数定义样本局部密度,克服DPC的密度定义缺陷;采用两步分配策略代替DPC的一步分配策略,克服DPC的“多米诺骨牌效应”,得到ESDTS-DPC算法。与DPC及其改进算法KNN-DPC、FKNN-DPC、DPC-CE和经典密度聚类算法DBSCAN的实验比较显示,提出的ESDTS-DPC算法具有更好的聚类准确性。  相似文献   

11.
针对密度峰值聚类算法(DPC)中存在的截断距离难以确定、局部密度定义单一的问题,本文提出了一种基于密度万有引力改进的引力峰值聚类算法(DG-DPC算法)。该算法使用相互K近邻的方法对相似性度量和局部密度进行了重新定义,然后将引力参数引入到DPC算法中,并通过新的相对局部密度与引力参数的倒数作出决策图选取簇中心,对数据集中的点进行分配。仿真实验表明,DG-DPC算法对于人工合成数据集和UCI数据集都有效,且准确率相对于基于相对密度优化的密度峰值聚类算法(RE-DPC算法)、DPC算法、基于间隙自动中心检测的密度峰值聚类算法(GAP-DPC算法)分别平均提高了31.07%、21.60%、17.20%。  相似文献   

12.
基于密度的聚类算法因其抗噪声能力强和能发现任意形状的簇等优点,在聚类分析中被广泛采用。提出的基于相对密度的聚类算法,在继承上述优点的基础上,有效地解决了基于密度的聚类结果对参数值过于敏感、参数值难以设置以及高密度簇完全被相连的低密度簇所包含等问题。  相似文献   

13.
一种基于距离的聚类和孤立点检测算法   总被引:2,自引:0,他引:2  
提出了一种基于距离的聚类和孤立点检测算法(DBCOD),根据距离阈值对数据点进行聚类,在聚类过程中记录每个数据点的密度,并根据密度阈值确定数据点是否为孤立点.实验结果表明,该算法不仅能够对数据集进行正确的聚类,可以发现任意形状的聚类,算法执行效率优于DBSCAN,具有对噪音数据、数据输入顺序不敏感等优点,同时还能有效地进行孤立点检测.  相似文献   

14.
针对网络异常流量检测技术准确率较低、簇的误划分等问题,提出基于改进密度峰值聚类算法的网络异常流量检测方案;首先对网络流量数据进行预处理和分组乱序,然后计算相应属性值并利用局部密度发现簇中心点,最后采用一种新的标签传递方式形成相应的簇群直至处理完所有数据。结果表明,相对于k均值算法和具有噪声的基于密度的聚类算法,基于改进的密度峰值聚类算法提升了网络异常流量的检测准确率,综合性能较优。  相似文献   

15.
一种基于密度的聚类算法实现   总被引:1,自引:0,他引:1  
基于密度的聚类算法OPTICS是一种大规模数据库的聚类算法,它是基于核心对象和可达距离来实现的.对于每一个核心对象将其邻域内的所有对象按到该核心对象的可达距离进行排序,每次都选择1个到该核心对象具有最小的可达距离的对象进行信息更新.算法实现采用优先队列保存候选对象以加快处理速度,最后用UCI数据集对算法进行聚类效果测试,结果表明OPTICS算法对数据集产生一个基于密度的簇排序结构.  相似文献   

16.
一种基于密度的分布式聚类算法   总被引:1,自引:0,他引:1  
对基于密度的分布式聚类算法DBDC(density based distributed clustering)进行改进,提出了一种基于密度的分布式聚类算法DBDC*.该算法在局部筛选代表点时结合贝叶斯信息准则BIC,得到少量精准反映局部站点数据分布的BIC核心点,有效降低了分布式聚类过程中的数据通信量,全局聚类时综合考虑了各站点数据的分布情况.实验结果表明,算法DBDC*的效率优于DBDC,聚类效果好.  相似文献   

17.
针对密度峰值聚类(density peak clustering, DPC)算法不能根据数据集自适应选取聚类中心和截断距离dc,从而不能自适应聚类的问题,提出了一种自适应的密度峰值聚类(adaptive density peak clustering, ADPC)算法.首先,提出了一个综合考虑局部密度ρi和相对距离δi的参数μi,根据μi的排列顺序及下降趋势trend自动确定聚类中心.然后,基于基尼系数G对截断距离dc做了自适应选择.最后,对ADPC算法做出了实验验证,并与DPC算法和K-means算法进行了对比.实验结果表明,ADPC算法具有较高的ARI,NMI和AC值,具有较好的聚类效果.  相似文献   

18.
针对密度聚类算法对邻域参数设置敏感的问题,提出一种基于密度的模糊自适应聚类算法.算法在无需预先设置聚类数以及邻域参数的情况下,可以自适应地根据样本间距离关系确定邻域半径得到样本密度,并根据样本密度逐渐增加聚类中心.为了保障聚类结果的正确性,同时提出一种新的模糊聚类有效性指标以判断最佳聚类数,消除了密度聚类算法对参数的敏感性.用UCI基准数据集进行实验,发现本文算法在对数据进行聚类时,聚类质量较原始密度聚类算法在准确性和自适应性方面均有显著提高.  相似文献   

19.
针对密度峰值聚类(DPC)算法存在的dc值难选择及近邻原则聚合操作在低密度区效果不佳的问题, 提出一种基于人工蜂群与CDbw聚类指标优化的密度峰值聚类(BeeDPC)算法, 以实现类簇间数据点的自动识别和合理聚类, 并解决DPC对类簇间数据点类别识别上存在的缺陷. 实验结果表明, BeeDPC算法具有自动识别并合理聚类类簇间数据点、 自动识别类簇中心点和类簇数量及自动处理任意分布数据集的优势.  相似文献   

20.
提出了一种基于距离和密度的聚类和孤立点检测算法.该算法根据距离和密度阈值对数据进行聚类,同时发现数据中的孤立点.实验结果表明,该算法能够识别任意形状的聚类,对高维数据有效,能够很好的识别出孤立点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号