首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
研究了复射影空间中具平行平均曲率向量的全实紧致子流形,得到了关于其第二基本形式长度平方的一个空隙区间。  相似文献   

3.
4.
常曲率空间中具有平行平均曲率向量的伪脐子流形   总被引:1,自引:0,他引:1  
讨论了常曲率空间中具有平行平均曲率向量的紧致伪脐子流形成为全子流形的条件,并用Ricci曲率的下界刻画了全脐子流形的性质。  相似文献   

5.
采用活动标架法,该文研究了四元数射影空间中具有常平均曲率的全实子流形,并且得到了一些pinching定理.这些定理推广和改进了四元数射影空间中全实极小子流形的相关结论.  相似文献   

6.
研究了单位球面中具有平行平均曲率向量的子流形的第二基本形式模长平方的Pinching 问题,得到了优于Yau 和莫小欢的 Pinching 常数,并获得更强的几何结论,即子流形是全脐的。另外,还把文献[2]的结论推广到了子流形是完备的情形。  相似文献   

7.
8.
给出了一个积分不等式,推广了文〔1〕中的结果。  相似文献   

9.
设M是n维完备黎曼流形,等距浸入(n+p)维单位球空间Sn+p,具有平行的单位平均曲率向量.则或者M局部地是Sn+p的一个(n+1)维全测地子流形Sn+1中的超曲面片;或者supSa≥n.其中supS是M的第二基本形式长度的平方的上确界.进一步,若n≤7,或者M整体地是Sn+p的一个(n+1)维全测地子流形Sn+1中的超曲面;或者supS(1+12sgn(p-2))>n.所得结果推广了具有平行的平均曲率向量的紧致子流形的结果.  相似文献   

10.
研究了四元数射影空间中的全实伪脐子流形的刚性,运用活动标架法和S.T.Yau广义极值原理,得到了关于第二基本形式模长平方、截面曲率的刚性定理,推广了已有理论的相关结果.  相似文献   

11.
本文研究一般黎曼流形中具有平行平均曲率向量的子流形,得到了关于这类子流形的一个积分不等式及相应的一个余维数减小的定理,推广了S.T.Yau的一个结论.  相似文献   

12.
B·Y·Chen在1973年分类了欧氏空间中紧致稳定超曲面。本文考虑“平行正则平均曲率向量”概念,它在超曲面时自然成立。用此概念,我们成功地把B.Y.Chen关于超曲面的上述结果推广到子流形。  相似文献   

13.
研究欧氏球面中具有平行平均曲率向量的紧致定向子流形 ,获得一个关于Ricci曲率满足处处大于或等于n - 1+(n - 1)H2 +3 n - 2n(n - 1) +2n |H| Sn+ 1-nH2 的条件下子流形的分类定理 .  相似文献   

14.
讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了紧致的C-全实子流形的一个刚性结果.  相似文献   

15.
16.
本文证明了积分不等式从而得到如下Pinching定理:若S≤[na+(1/2)(n+1)(b-|b|)]/(3-(1/(p-1))+n~(1/2)则M落在N的一个全测地子流形S~(n+1)中或S=[na+(1/2)(n+1)(b-|b|)]/(3-(1/(p-1))+n~(1/2)所得积分不等式优于白正国教授的结果而Pinching定理是丘成桐教授相应定理的推广.  相似文献   

17.
设Mn是等距嵌入到n+p维球空间Sn+p(1)的n(>2)维紧致子流形,具有平行的非零平均曲率向量且Ricci曲率有正的下界(n-1)c(0相似文献   

18.
研究了拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形,得到一个积分不等式:∫Mn{(1 (1)/(2)sgn(p-1) (n)/(2n-1))σ2-[na (1)/(2)(b-|b|)(n 1)](σ-nH2) n(n-1)b2-((n)/(2n-1) 1)n2H4]*1≥0  相似文献   

19.
对n维空间型中m维可定向闭子流形的平均曲率向量的模长作了估计.在n维空间型中比较了m维定向子流形和n维空间型中m维测地球面的平均曲率向量的模长.在一定意义下描述了空间型中子流形的弯曲程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号