共查询到20条相似文献,搜索用时 62 毫秒
1.
利用卷积神经网络(CNN)提取水表故障特征,提出一种基于CNN的水表故障检测方法,并通过大量实验对检测模型进行参数优化.对比实验结果表明,所提方法相比于支持向量机和集成学习方法,具备更高的检测性能,且检测精度满足实用需求. 相似文献
2.
作为深度学习的一种有效算法,深度卷积网络已成功应用在处理图像、视频和音频等领域.通过建立一卷积神经网络模型并应用于网络入侵检测,选取的卷积核与数据进行卷积操作提取特征的局部相关性从而提高特征提取的准确度.采集到的网络数据通过多层"卷积层-下采样层"的处理对网络中正常行为和异常行为的特征进行深度刻画,最后通过多层感知机进行正确分类.KDD 99数据集上的实验表明,文中提出的卷积神经网络模型与经典BP神经网络、SVM算法等相比,有效提高了入侵检测识别的分类准确性. 相似文献
3.
近年来,大多数火灾自动报警系统都是通过检测感温、感烟和感光等传感器的方法进行检测,只能针对单一特征信息进行判断识别,受到外界空间、环境或人为因素的影响.卷积神经网络(CNN)以其高准确率的识别率在广泛应用成为一个活跃的研究课题.然而如何可靠、有效地解决火焰检测问题仍然是实践中一个具有挑战性的问题.本文提出了一种新的基于... 相似文献
4.
目标识别和定位是计算机视觉领域研究的主要问题,图像分割、目标跟踪、目标行为分析等都是以图像中的目标检测为基础的.随着深度学习技术的发展,目标检测算法取得了巨大突破.在广泛调研相关文献的基础上,对目标检测算法进行分析和对比,分别研究基于区域提取的两阶段目标检测架构和直接位置回归的一阶段目标检测架构的本质特点和发展过程,并提出未来的发展方向. 相似文献
5.
《合肥工业大学学报(自然科学版)》2021,44(7)
针对神经网络训练时收敛慢和模型泛化能力差的问题,文章首先分析传统的和基于深度学习的目标检测算法各自的优势和不足,接着概括梯度下降法各种变体优化算法和现阶段主流数据增强方法对应的优缺点,最后对训练时的优化问题提出组合使用AdaMod和AdamW的训练优化方案,提高了训练网络收敛效率。针对深度神经网络性能表现比较依赖于数据集从而导致泛化能力差的问题,该文使用基于线性插值的数据增强方案,对类别不同的样本之间的领域关系进行建模,增强了神经网络的健壮性。在VOC07+12数据集上实验结果表明EfficientDet-d0检测算法模型参数量、浮点计算量、精度和泛化性能比较均衡,泛化能力得到增强,训练过程收敛更快,验证了该文提出的训练优化方案和使用的数据增强方法是有效的。 相似文献
6.
针对传统智能诊断方法依赖于信号处理和故障诊断经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合softmax分类器,针对数据集不平衡问题引入加权损失函数、正则化以及批量归一化等模型优化技术搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。模型从原始实测轴承振动信号出发逐层学习实现特征提取与目标分类。实验结果表明,优化后的深度学习模型可实现对早期微弱故障、不同程度故障的精确识别,在不平衡数据集上也可达到95%的识别准确率,并且模型拥有较快的收敛速度和较强的泛化能力。 相似文献
7.
在信息化和智能化高度发展的大数据时代,身份信息安全面临着种种挑战,传统的身份识别技术已不能满足公众安全需求。为解决传统唇纹识别算法中图像预处理过程复杂、特征提取困难和识别周期较长等问题,提出基于卷积神经网络的唇纹识别算法,搭建一个轻量型神经网络LNet-6(lightweight network-6)。该网络模型具有参数计算量少、模型文件小和可移植性强等优势。直接输入原始数据集,简化图像预处理步骤,通过卷积层自动提取特征信息和下采样操作降低模型训练参数,避免了图像特征提取算法的复杂设计。在测试集上获得了97.97%的识别率,验证了该方法的有效性。 相似文献
8.
针对杂草的精确喷洒问题提出一种基于卷积神经网络(Convolution Neural Network, CNN)的棉花植株和杂草的检测识别方法。首先采集不同环境下棉田中棉花植株和不同种类的杂草图像作为网络模型的数据集,对数据集进行数据增强来增加数据集的数量,将其分为训练集与测试集;然后构建CNN模型,在模型中添加Dropout层,以防止网络出现过拟合,将训练集数据输入网络模型,使模型学习棉花植株和杂草的特征信息;最后将测试集数据输入CNN模型,测试CNN模型对棉花植株和杂草的识别能力。研究结果表明CNN对于棉花植株和杂草的分类结果精度超过了99.95%,识别时间为197.2s,证明CNN可以快速高效的识别棉田中棉花植株和杂草,为农业智能精确除草装备的研发提供研究基础。 相似文献
9.
提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的多姿态人脸识别方法。利用该方法可以将输入的人脸投影到高维特征空间并输出具备姿态鲁棒性的人脸特征,从而进行精确的多姿态人脸识别。经过大量的实验验证,该模型在多个数据集上取得了良好效果。与传统的单路CNN网络层次结构不同,本文方法采用双路CNN网络层次结构并结合度量学习来优化传统的CNN模型。最后,使用Tensorflow深度学习框架进行实验,实验结果表明,该框架的识别准确率比目前几种常用的多姿态人脸识别算法的识别准确率更高。 相似文献
10.
王彦雅 《河北省科学院学报》2022,39(2):14-22
近年来,深度学习领域出现了许多优秀的算法,特别是Two-Stage(两阶段)目标检测模型R-CNN(Region-CNN)的产生,基本取代了传统目标检测算法,极大地提高了检测模型的综合性能。本文详细介绍了目前流行的Two-Stage算法,并对它们的流程、特点、效率以及优缺点等方面进行了综述,最后对目标检测领域存在的问题以及未来研究方向提出了建议。 相似文献
11.
胃镜检查是发现胃息肉的主要方法。传统的人工检查方式存在准确率低,易漏诊、误诊的情况。本文提出了一种基于深度学习的YOLOv5-SE胃息肉检测网络。该网络在目标检测算法YOLOv5的基础上进行了改进,引入注意力机制,将SE Block加入到主干网络的最后一层,增强网络的特征提取能力。改进后的YOLOv5-SE胃息肉检测网络的平均精度均值(mAP)达到了94.5%,相比原网络提高了3.1%,推理速度达到67fps,在满足实时性要求下较好地完成了胃息肉检测的要求。YOLOv5-SE胃息肉检测网络具有在实时性、自动检测的精度和速度等方面有一定提升,对促进胃息肉的自动检测有重要意义。 相似文献
12.
文章介绍了Zig Bee技术的特点和智能超声波水表的计量原理,并对Zig Bee技术在智能超声波水表远程抄表系统的应用进行了探讨。该抄表方案借助Zig Bee技术在无线通信方面的优势,具有组网迅速、网络容量大、传输可靠、数据安全、实时性强等特点,非常适合智能超声波水表无线组网。该抄表方案也可应用于电表和气表。 相似文献
13.
14.
Android系统的迅速迭代及其开源特性使得Android恶意软件产生大量的变种,这对Android恶意软件检测和分类带来不小的挑战.机器学习方法已成为恶意软件分类的主流方法,但现有的大多数机器学习方法都使用传统的算法(如支持向量机).目前卷积神经网络(CNN)作为一种深度学习方法表现出了更好的性能,特别是在图像分类等应用上.结合这一优势以及迁移学习的思想,本文提出了一种基于CNN架构的Android恶意软件检测和分类方法.首先,提取Android应用的DEX文件然后将其转换成灰度图像并放入CNN中进行训练分类.本文实验使用Drebin和Android Malware Dataset(AMD)两个样本集.实验结果显示,该方法在Android恶意软件家族分类上准确率达到97.36%,在Android恶意软件检测中在不同样本集上的准确率都达到了99%以上.实验表明,本文提出的方法具有较高的分类准确率和泛化性能. 相似文献
15.
为了提高故障管理的灵活性、智能性和高效性,克服传统的集中式网络故障管理带来的诸多缺点,分别描述了基于SNMP和移动代理的网络故障管理系统框架,然后从理论研究和实际测试两个角度对二者进行了详细的对比研究。结果表明,与前者相比,由于移动代理具有移动性、智能性和灵活性,基于移动代理的网络故障管理系统能够对网络实施更加高效、实时和准确的管理,在复杂网络的管理方面优势尤其明显。 相似文献
16.
在研究组合导航系统常用故障检测方法的基础上,将两种χ2故障检验法的检验量相结合,提出了一种针对组合导航系统的二叉树模糊支持向量机故障检测算法.该算法综合应用了Kalman滤波器、二叉树支持向量机等理论,采用模糊因子有效地减弱了噪声样本数据对支持向量机训练结果的影响,采用二叉树支持向量机的多个支持向量机实现对组合导航系统的多级故障进行多级分类和故障检测.最后,针对MINS/GPS组合导航系统,进行了相关仿真研究,仿真结果证明了该方法的有效性. 相似文献
17.
应用卷积神经网络将肺结节从含有背景、噪声的胸腔区域里检测并识别出来。首先,对图像进行预处理,获得肺实质图像。然后,应用Faster R-CNN多特征融合算法检测肺结节候选区域,再利用多角度特征融合方法滤除假阳性结节。接着,通过数据增强法、残差学习法、优化初始参数等对卷积神经网络的性能进行优化。最后,应用迁移学习方法对数据集进行训练,得出最终的检测结果。抽取LIDC数据集中含有肺结节图像数据,检测并识别肺结节的准确率达到98. 1%。实验结果表明,该算法优于其他3类算法,实现了肺结节的精确检测和识别,在保证检测和识别出正确结节的前提下,降低了过拟合率及训练时间,提高了算法效率,研究成果为早期肺癌的诊断提供参考依据。 相似文献
18.
探地雷达(ground-penetrating radar, GPR)是一种可用于道路内部异常目标识别的无损检测方法。GPR工作时往往产生海量的扫描数据,而数据解释是技术要求高、任务繁重的工作,通常需要人工完成。此外,道路内部的复杂性和异常目标的多样性增加了图像异常检测的难度。近年来,人工智能(artificial intelligence, AI)技术的快速发展为基于AI的探地雷达B-scan图像自动解释提供了可行的技术思路,常用的深度学习算法有RCNN(region-convolutional neural network)和YOLO(you only look once)。虽然YOLOv3在目标检测方面已经有了一定的成效,但YOLOv4的改进算法可以进一步提高检测能力。结合YOLOv3算法,对比研究分析YOLOv4目标检测算法的改进对于目标检测任务的影响,以及YOLOv4算法对探地雷达图像异常目标检测效率的提升能力。结果表明,YOLOv4的改进算法更适用于探地雷达异常目标的自动检测,经过训练后的YOLOv4网络模型满足探地雷达道路内部异常目标智能化检测需求,具有较强的实用价值。 相似文献
19.
识别砂岩中的石英、长石和岩屑对判断沉积环境具有重要意义,但传统的人工识别方法存在主观性强、对经验依赖程度高等问题。本文利用深度学习、卷积神经网络等技术构建了一种基于Faster R-CNN目标检测算法的砂岩显微组分图像识别方法,实现了正交偏光下对薄片图像中石英、长石、岩屑三种组分的智能识别,三种组分平均识别准确率为89.28%。为了验证模型的可靠性,实验对比了不同算法和特征提取网络,结果表明:Faster R-CNN目标检测算法的识别效果优于YOLO V3、YOLO V4、YOLO V5s,ResNet50特征提取网络的表现效果优于VGG16。采用ResNet50特征提取网络的Faster R-CNN目标检测模型优势显著,它可以更好满足岩石薄片的识别要求,为传统的人工方法提供智能化技术方案。 相似文献
20.
根据神东煤炭集团万利一矿水文地质条件,及31上煤上覆岩层岩性,冲刷等地质构造带,从现场总结出水文机理,并结合31上煤以采及以掘工作面进行分析,对矿井31上煤浅埋煤层其他工作面探放水进行研究。 相似文献