共查询到18条相似文献,搜索用时 78 毫秒
1.
分数阶积分方程 总被引:2,自引:0,他引:2
杨光俊 《云南大学学报(自然科学版)》1997,19(3):328-334
对分数阶微分方程的初值问题所对应的分数阶积分方程z(t)=∑lk=0Ckkltk+(-λ)Γ(α)∫t0(t-s)α-1z(s)dsα≥1z(t)=∑2l-1k=0CkГ(1+kα2l)tkα/2l+(-λ)Г(α)∫t0(t-s)α-1z(s)dsl=0,1,2,…α≥1利用Melin变换和Fox函数求出的解为z(t)=∑lk=0∑∞n=0Ck(-λ)nГ(1+k+nα)tk+nα和z(t)=∑2l-1k=0Ck∑∞n=0(-λ)nГ(1+nα+kα2l)tnα+kα2l 相似文献
2.
利用Haar小波求解分数阶第一类Volterra积分方程,主要采用配置法将积分方程转化为线性方程组.证明了解的存在性,并且给出了数值解的误差估计,数值算例表明了算法的有效性. 相似文献
3.
针对Caputo分数阶导数意义下的时间分数阶扩散-波动方程进行数值研究.利用Caputo分数阶导数与Grunwald-Letnikov分数阶导数的关系对时间分数阶导数进行时间离散化处理,再利用二阶中心差商离散方程中的二阶空间导数,并结合边值条件的离散化,把离散化方程的求解转化为一个线性方程组的求解.利用Matlab编程... 相似文献
4.
Adomian 分解法求解非线性分数阶 Volterra 积分方程的数值解,将 Adomian 多项式与积分方程的定义相结合,得出一个递推公式求解方程的级数解,并进行了收敛性分析,给出了级数解的最大绝对截断误差,通过数值算例说明了该方法的有效性和可行性。 相似文献
5.
分数阶薛定谔方程是分数阶量子力学中最基本的数学模型,它不仅可以描述不同物理背景下的非线性波的传输,而且也可以描述锥形光束的衍射、混沌和湍流等复杂现象,因而受到许多学者的广泛关注.Cheng M在文献[1]中通过Nehari流形方法研究了一类分数阶薛定谔方程,证明了当频率很小时方程驻波解的存在性.本文利用变分方法和环绕定... 相似文献
6.
介绍了3种求解带有Caputo型导数的时间-空间分数阶扩散方程的方法.通过分离变量和级数展开求数值解,将Fourier变换和Laplace变换用于求解析解,并把时间和空间定义域上的分数阶导数分别限制在0γ≤1,0β≤2. 相似文献
7.
考虑修正Riemann-Liouville分数阶导数意义下的一类空间-时间Whitham-Broer-Kaup(WBK)方程行波解的存在性,首先将WBK方程化为常微分方程组,然后利用首次积分法得到该方程一些行波解的解析表达式. 相似文献
8.
张申贵 《吉林大学学报(理学版)》2018,56(4):786-792
用临界点理论和变分方法, 考虑一类具有超线性非线性项和非局部系数的分数阶椭圆型方程, 在Ambrosetti Rabinowitz型超线性条件不满足的情形下, 获得了该类问题非平凡解的存在性结果. 相似文献
9.
在位势函数满足局部条件的假设下,应用惩罚方法,讨论了带有超线性、次临界增长非线性项的分数阶Kirchhoff方程,证明了该方程半经典解的存在性. 相似文献
10.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性. 相似文献
11.
本文利用单裂纹基本解,将裂纹产生的不连续解分离,然后配以常规边界积分方程解答,使含裂纹柱的扭转问题归结为解一组混合型积分方程,并为此建立了数值方法.文中对工程中有兴趣的几种含单裂纹柱体的扭转作了数值计算,得到了它们的抗扭刚度和应力强度因子. 相似文献
12.
利用流体膜泡的物理条件 ,引入泰勒级数解法来求解二阶非线性微分方程 - Helfrich方程 ,并特别介绍了如何利用此简单的方法求得著名的轴对称常平均曲率曲面的过程 相似文献
13.
研究了一类包含p-拉普拉斯算子、并具有Riemann-stieljes积分边界条件的分数阶微分方程的正解存在性.通过构造锥上全连续算子,采用单调迭代法得到了系统存在正解的充分条件. 相似文献
14.
研究一类具有分数阶积分条件的分数阶微分方程边值问题,其非线性项包含Caputo型分数阶导数.将该问题转化为等价的积分方程,利用Leray-Schauder非线性抉择原理结合一个范数形式的新不等式,获得一定增长性条件下存在解的充分条件,推广和改进已有的结果,并给出应用实例. 相似文献
15.
王林生 《河海大学学报(自然科学版)》1989,17(6):59-66
本文提出了基础板的积分方程解法.该法首先将以挠度W和反力?相耦合的微分-积分方程化成一个求W的积分方程和一个求?的微分式子,然后采用基于虚功原理的差分离散格式,建立了支配方程.文中给出了算例,并将计算结果与现有成果作了对比.对比结果表明,本文方法具有方程简单、未知数少、精度高等优点,可作为基础板分析的又一方法. 相似文献
16.
应用广义函数的 Fourier积分变换导出一类反应扩散方程的基本解 ,在此基础上得到边界积分方程 ,消除了边界元计算中边界积分方程的区域积分项。 相似文献
17.
给出了求解一类时间分数阶时滞微分方程的数值解法,将传统对时间的一阶导数利用分数阶导数α(0α1)阶导数代替,给出了求解微分方程的差分格式,并对差分格式证明了收敛性和稳定性,数值算例检验该格式解决此类方程是有效的. 相似文献
18.
分数阶微分方程积分边值问题正解的存在性 总被引:2,自引:0,他引:2
利用锥上不动点定理,研究一类分数阶微分方程积分边值问题正解的存在性,得到了边值问题至少存在一个正解的充分条件,并给出了应用实例. 相似文献