首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).  相似文献   

2.
3.
Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.  相似文献   

4.
After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.  相似文献   

5.
Whiten A 《Nature》2005,437(7055):52-55
Half a century of dedicated field research has brought us from ignorance of our closest relatives to the discovery that chimpanzee communities resemble human cultures in possessing suites of local traditions that uniquely identify them. The collaborative effort required to establish this picture parallels the one set up to sequence the chimpanzee genome, and has revealed a complex social inheritance system that complements the genetic picture we are now developing.  相似文献   

6.
The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.  相似文献   

7.
8.
Mapping of an endogenous retroviral sequence to human chromosome 18   总被引:1,自引:0,他引:1  
The application of recombinant DNA technologies has allowed the detection of at least three families of moderately repetitive DNA segments in the human genome that are homologous to retroviruses previously isolated from mice and primates. One of these DNA segments has been shown by nucleotide sequence comparisons to be distantly related to both Moloney murine leukaemia virus (MoMuLV) and the endogenous baboon retrovirus and to have the sequence organization characteristic of an integrated retrovirus. Isolation of the homologous locus from chimpanzee DNA indicated that the integration event preceded the evolutionary divergence of chimpanzees and man. Here we have used a panel of rodent x human somatic cell hybrids to assign the chromosomal localization of this segment, called ERV1 (endogenous retrovirus-1), to human chromosome 18 (HSA 18).  相似文献   

9.
Eight palindromes comprise one-quarter of the euchromatic DNA of the male-specific region of the human Y chromosome, the MSY. They contain many testis-specific genes and typically exhibit 99.97% intra-palindromic (arm-to-arm) sequence identity. This high degree of identity could be interpreted as evidence that the palindromes arose through duplication events that occurred about 100,000 years ago. Using comparative sequencing in great apes, we demonstrate here that at least six of these MSY palindromes predate the divergence of the human and chimpanzee lineages, which occurred about 5 million years ago. The arms of these palindromes must have subsequently engaged in gene conversion, driving the paired arms to evolve in concert. Indeed, analysis of MSY palindrome sequence variation in existing human populations provides evidence of recurrent arm-to-arm gene conversion in our species. We conclude that during recent evolution, an average of approximately 600 nucleotides per newborn male have undergone Y-Y gene conversion, which has had an important role in the evolution of multi-copy testis gene families in the MSY.  相似文献   

10.
11.
Patterson N  Richter DJ  Gnerre S  Lander ES  Reich D 《Nature》2006,441(7097):1103-1108
The genetic divergence time between two species varies substantially across the genome, conveying important information about the timing and process of speciation. Here we develop a framework for studying this variation and apply it to about 20 million base pairs of aligned sequence from humans, chimpanzees, gorillas and more distantly related primates. Human-chimpanzee genetic divergence varies from less than 84% to more than 147% of the average, a range of more than 4 million years. Our analysis also shows that human-chimpanzee speciation occurred less than 6.3 million years ago and probably more recently, conflicting with some interpretations of ancient fossils. Most strikingly, chromosome X shows an extremely young genetic divergence time, close to the genome minimum along nearly its entire length. These unexpected features would be explained if the human and chimpanzee lineages initially diverged, then later exchanged genes before separating permanently.  相似文献   

12.
Lonsdorf EV  Eberly LE  Pusey AE 《Nature》2004,428(6984):715-716
The wild chimpanzees in Gombe National Park, Tanzania, fish for termites with flexible tools that they make out of vegetation, inserting them into the termite mound and then extracting and eating the termites that cling to the tool. Tools may be used in different ways by different chimpanzee communities according to the local chimpanzee culture. Here we describe the results of a four-year longitudinal field study in which we investigated how this cultural behaviour is learned by the community's offspring. We find that there are distinct sex-based differences, akin to those found in human children, in the way in which young chimpanzees develop their termite-fishing skills.  相似文献   

13.
Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.  相似文献   

14.
Human chromosome 12 contains more than 1,400 coding genes and 487 loci that have been directly implicated in human disease. The q arm of chromosome 12 contains one of the largest blocks of linkage disequilibrium found in the human genome. Here we present the finished sequence of human chromosome 12, which has been finished to high quality and spans approximately 132 megabases, representing approximately 4.5% of the human genome. Alignment of the human chromosome 12 sequence across vertebrates reveals the origin of individual segments in chicken, and a unique history of rearrangement through rodent and primate lineages. The rate of base substitutions in recent evolutionary history shows an overall slowing in hominids compared with primates and rodents.  相似文献   

15.
Bohossian HB  Skaletsky H  Page DC 《Nature》2000,406(6796):622-625
In 1947, it was suggested that, in humans, the mutation rate is dramatically higher in the male germ line than in the female germ line. This hypothesis has been supported by the observation that, among primates, Y-linked genes evolved more rapidly than homologous X-linked genes. Based on these evolutionary studies, the ratio (alpha(m)) of male to female mutation rates in primates was estimated to be about 5. However, selection could have skewed sequence evolution in introns and exons. In addition, some of the X-Y gene pairs studied lie within chromosomal regions with substantially divergent nucleotide sequences. Here we directly compare human X and Y sequences within a large region with no known genes. Here the two chromosomes are 99% identical, and X-Y divergence began only three or four million years ago, during hominid evolution. In apes, homologous sequences exist only on the X chromosome. We sequenced and compared 38.6 kb of this region from human X, human Y, chimpanzee X and gorilla X chromosomes. We calculated alpha(m) to be 1.7 (95% confidence interval 1.15-2.87), significantly lower than previous estimates in primates. We infer that, in humans and their immediate ancestors, male and female mutation rates were far more similar than previously supposed.  相似文献   

16.
Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome.  相似文献   

17.
以牛的ANGPTL1基因为研究对象,利用生物信息学方法,对牛的ANGPTL1基因进行了电子克隆和序列分析,并对推导出的ANGPTL1蛋白结构与性质进行了初步分析。结果表明,牛的ANGPTL1基因序列长为2576bp,该基因的编码序列长为1476bp,编码492个氨基酸,编码序列的两翼有135bp的5’非编码区和785bp的3’非编码区。DNA序列的G+C百分含量为44.31%,A+T百分含量为55.69%。该基因的核苷酸序列与人、黑猩猩、鼠和狗ANGPTL1基因的cDNA序列的相似性分别为91%、90%、82%和93%。在氨基酸序列上与人、黑猩猩、鼠和狗的相似性分别为95%、95%、92%和95%。用氨基酸序列构建的进化树显示,在人、牛、黑猩猩、狗、褐鼠、原鸡几种动物中,牛与狗的亲缘关系最近。  相似文献   

18.
Integration of telomere sequences with the draft human genome sequence   总被引:15,自引:0,他引:15  
Riethman HC  Xiang Z  Paul S  Morse E  Hu XL  Flint J  Chi HC  Grady DL  Moyzis RK 《Nature》2001,409(6822):948-951
Telomeres are the ends of linear eukaryotic chromosomes. To ensure that no large stretches of uncharacterized DNA remain between the ends of the human working draft sequence and the ends of each chromosome, we would need to connect the sequences of the telomeres to the working draft sequence. But telomeres have an unusual DNA sequence composition and organization that makes them particularly difficult to isolate and analyse. Here we use specialized linear yeast artificial chromosome clones, each carrying a large telomere-terminal fragment of human DNA, to integrate most human telomeres with the working draft sequence. Subtelomeric sequence structure appears to vary widely, mainly as a result of large differences in subtelomeric repeat sequence abundance and organization at individual telomeres. Many subtelomeric regions appear to be gene-rich, matching both known and unknown expressed genes. This indicates that human subtelomeric regions are not simply buffers of nonfunctional 'junk DNA' next to the molecular telomere, but are instead functional parts of the expressed genome.  相似文献   

19.
Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.  相似文献   

20.
Gene duplication followed by adaptive evolution is one of the primary forces for the emergence of new gene function. Here we describe the recent proliferation, transposition and selection of a 20-kilobase (kb) duplicated segment throughout 15 Mb of the short arm of human chromosome 16. The dispersal of this segment was accompanied by considerable variation in chromosomal-map location and copy number among hominoid species. In humans, we identified a gene family (morpheus) within the duplicated segment. Comparison of putative protein-encoding exons revealed the most extreme case of positive selection among hominoids. The major episode of enhanced amino-acid replacement occurred after the separation of human and great-ape lineages from the orangutan. Positive selection continued to alter amino-acid composition after the divergence of human and chimpanzee lineages. The rapidity and bias for amino-acid-altering nucleotide changes suggest adaptive evolution of the morpheus gene family during the emergence of humans and African apes. Moreover, some genes emerge and evolve very rapidly, generating copies that bear little similarity to their ancestral precursors. Consequently, a small fraction of human genes may not possess discernible orthologues within the genomes of model organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号