共查询到20条相似文献,搜索用时 31 毫秒
1.
在求解高维空间中复杂多峰函数的优化问题时,传统的粒子群算法在收敛速度和局部搜索能力等方面表现出严重不足。针对这些问题,提出了一种基于最优评价的改进自适应粒子群算法(IAPSO),引入了改进的速度迭代公式,利用对每次迭代后种群的一系列最优值的评价来控制惯性权重的增幅,并设置对速度和位置的变异机制来防止搜索陷入局部最优。相关实验表明,在对高维空间中的复杂多峰函数进行优化求解时,改进粒子群算法IAPSO的表现比常规粒子群算法更加优越。 相似文献
2.
An improved particle swarm optimization (PSO) algorithm is proposed to train the fuzzy support vector machine (FSVM) for pattern multi-classification. In the improved algorithm, the particles studies not only from itself and the best one but also from the mean value of some other particles. In addition, adaptive mutation was introduced to reduce the rate of premature convergence. The experimental results on the synthetic aperture radar (SAR) target recognition of moving and stationary target acquisition and recognition (MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 相似文献
3.
粒子群优化(particle swarm optimization, PSO)算法基本思想是试图通过模拟鸟群觅食中的迁徙和聚集等行为获得连续非线性函数的最佳值,其仿生算法产生于对鸟群寻食过程中飞行方向与飞行速度等的隐喻。近年对粒子群算法经典算法的研究,虽然在速度及精度上有所改进,但由于缺乏细致化仿生(precise bionic metaphor, PBM),改进效果并不太明显。通过在PSO算法中引入飞鸟寻食细致化行为特征隐喻,即在算法中同时导入满意粒子局地细致化寻优和探索粒子随机寻优过程,进而提出了一种新的基于细致化仿生的改进PSO算法;对改进算法和经典算法进行了性能比较,结果显示所提算法在收敛速度和求解精度方面较经典算法有很大程度的改善。 相似文献
4.
基于角度坐标的多目标粒子群优化算法 总被引:1,自引:0,他引:1
为了在保证多目标粒子群优化(multi-objective particle swarm optimization, MOPSO)算法所求解集分布性的前提下提高算法的收敛性,依据辅助适应度赋值策略,提出了基于角度坐标的多目标粒子群优化(intelligent MOPSO, IMOPSO)算法。通过建立角度坐标系,确定了不同维优化目标下目标向量的角度坐标及角度参数,给出了求取目标函数空间中参考线角度参数的方法,并定义了目标向量的辅助适应度值,以对处于非劣支配关系的个体进行综合比较。结果表明,IMOPSO算法较好地维护了Pareto解的分布性与收敛性,且在求解小规模的最优个体时仍能在整个Pareto前沿均匀分布,未出现“聚集”现象,运行时间小于NSGA2、SPEA2、MOEA/D,充分验证了IMOPSO算法的有效性。 相似文献
5.
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs) in a known static rough terrain environment. This approach aims to find collision-free and feasible paths with minimum altitude, length and angle variable rate. First, a three-dimensional(3D) modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs. Considering the length, height and tuning angle of a path, the path planning of R-UAVs is described as a tri-objective optimi... 相似文献
6.
通过对微粒群优化算法的分析,提出了一种用微分方程组描述的微粒群优化算法——微分进化微粒群优化(DEPSO)算法,并利用传递函数对DEPSO算法的收敛性进行分析.在此基础上,通过引入PID控制器以控制DEPSO算法的动态进化行为,以增强微粒产生的多样性,从而改进微粒群优化算法的全局收敛性.仿真结果表明了此方法的有效性. 相似文献
7.
针对微粒群优化算法的早熟停滞缺陷问题,提出了一种基于种群年龄模型的动态粒子数微粒群优化算法. 该算法建立了生物种群年龄模型,将每个粒子划分为不同的年龄段,动态地依据种群环境和个体信息有效地控制种群的粒子数规模;设计了较优粒子的生殖策略和较差粒子的死亡策略,增加群体的多样性和减少冗余计算量,以保证算法获得最优性能. 将此算法与其他改进算法进行比较,仿真测试结果表明,新算法具有较高的全局搜索成功率和效率,计算量显著降低,优化精度显著提高,能够有效地避免算法陷入局部停滞的缺点. 相似文献
8.
提出了一种基于实数编码的粒子群优化和遗传算法的混合优化算法,该算法首先由粒子群优化进化一定代数后,将最优的M个粒子保留,去掉适应度较差的pop_size M个粒子。然后以这最优的M个粒子的位置值为基础,选择复制得到pop_size M个个体,并进行交叉、变异等遗传算法运算。最后将保留的M个粒子位置值与遗传算法进化得到新的pop_size M个体合并形成新的粒子种群,进行下一代进化运算。该算法在进化过程中能进行多次信息交换,使两种算法互补性得到更充分的发挥。通过5个函数优化实例与其他多种算法的对比研究,表明该算法收敛性能好,运算速度快,优化能力强。此外,还研究了最优粒子保留规模M以及粒子群优化进化较少代数规模对算法性能的影响。 相似文献
9.
基于分群粒子群优化的传感器调度方法 总被引:1,自引:0,他引:1
对面向目标跟踪任务的多传感器多任务调度问题进行研究。考虑到探测目标的运动特性,采用扩展卡尔曼滤波法实施目标跟踪,以成功调度任务的综合优先权、目标跟踪精度以及传感器网络的能源消耗为指标,建立了多传感器多任务调度的混合整数规划模型。提出一种基于分群机制的分群粒子群算法对模型进行求解,该方法通过粒子分群,提高对问题域的全局搜索能力,避免算法过快收敛和发生早熟。实验结果表明,该方法用于传感器调度问题,具有较好的求解性能。 相似文献
10.
混合粒子群算法在高维复杂函数寻优中的应用 总被引:7,自引:0,他引:7
针对粒子群算法应用于复杂函数优化时可能出现过早收敛于局部最优解的情况,提出了一种改进的算法结构。通过构造单个粒子的最优序列代替单一的进化方向和类似于蚁群算法信息素表的选择机制,保留了粒子的多种进化可能方向,提高了粒子间的多样性差异,从而改善算法能力。算法同时设计了最优序列的加入规则和基于粒子群聚度的最优序列动态长度控制方法。改进后的混合粒子群算法保证了算法拥有更强的搜索能力,也保留了粒子群算法高效优化的特点。仿真实验证明,混合粒子群方法相对传统方法而言具有明显的精度优势。 相似文献
11.
Adaptive multi-feature tracking in particle swarm optimization based particle filter framework 总被引:2,自引:0,他引:2 下载免费PDF全文
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance. 相似文献
12.
求解约束优化问题的改进粒子群算法 总被引:2,自引:0,他引:2
针对高维复杂约束优化问题,提出了一种基于平滑技术和一维搜索的粒子群算法(NPSO)。该算法使粒子的飞行无记忆性,结合平滑函数和一维搜索重新生成停止进化粒子的位置,增强了在最优点附近的局部搜索能力;定义了不可行度阈值,利用此定义给出了新的粒子比较准则,该准则可以保留一部分性能较优的不可行解微粒,使微粒能快速的找到位于约束边界或附近的最优解;最后,为了扩大粒子的搜索范围,引进柯西变异算子。仿真结果表明,对于复杂约束优化问题,算法寻优性能优良,特别是对于超高维约束优化问题,该算法获得了更高精度的解。 相似文献
13.
14.
基于粒子群优化模糊神经网络的高技术知识创新评价 总被引:1,自引:0,他引:1
针对高技术知识创新非线性、不确定性、时变性的特点,建立了评价指标体系|结合粒子群优化算法,提出了一种改进的模糊神经网络评价模型。该模型能够进行多个并行时变模糊神经网络组合算法,这些算法通过进化预置网络的连接权值、阈值和补偿参数,实现网络的学习和精确推理。通过仿真应用,证明了此种模型结构与算法适用性好,便于计算机实现,且全局收敛能力、收敛速度和泛化精度等性能均优于原先的学习算法。 相似文献
15.
基于二维直方图和粒子群优化的边缘检测 总被引:1,自引:0,他引:1
针对基于二维直方图的分割方法存在计算耗时的缺点,将群体智能中的粒子群优化算法应用到图像分割中,提出了一种新的边缘检测算法。新方法在定义的二维灰度空间中,利用粒子群优化算法自适应搜索最优解,并以此作为边缘检测算子的门限,阈值变换后便可得到表示原图像主要特征的分割结果。通过对水下图像处理的实验证明,该算法对简单背景的图像分割是有效的,和传统检测方法相比,具有更好的抗噪性能。 相似文献
16.
针对同步时序电路的初始化问题,提出了一种新的实现方法。当时序电路中有未确定状态的触发器时,就不能顺利完成该电路的测试生成,因此初始化是时序电路测试生成中的关键问题。时序电路初始化的核心就在于寻找一个测试序列,把电路引导到一个确定的状态。利用粒子群优化算法生成最短的初始化序列,使最优粒子最大限度地初始化电路中的触发器。针对ISCAS’89标准时序电路的仿真结果表明,与其他现有初始化方法相比,该算法能在初始化触发器数量和序列长度上取得更好的结果,证明了该算法的有效性。 相似文献
17.
基于自适应量子粒子群算法的FIR滤波器设计 总被引:4,自引:0,他引:4
针对量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法的参数控制方式,提出了一种自适应调节方法,该方法根据粒子之间的位置关系来设定参数值,给出了具体的设计思想与实现步骤。然后针对有限脉冲响应(finite impulse response,FIR)数字滤波器的优化设计实质,即多参数优化问题,通过适当的编码方式将改进的QPSO算法(adaptive QPSO,AQPSO)应用在其优化设计中,设计了低通和带通FIR数字滤波器。实验结果表明,AQPSO在收敛速度、鲁棒性及优化效果等方面都优于遗传算法(genetic algorithm,GA)、PSO算法及QPSO算法,说明了AQPSO算法的有效性和可行性。 相似文献
18.
Margin optimization algorithm for digital subscriber lines based on particle swarm optimization* 下载免费PDF全文
The margin maximization problem in digital subscriber line (DSL) systems is investigated. The particle swarm optimization (PSO) theory is applied to the nonconvex margin optimization problem with the target power and rate constraints. PSO is a new evolution algorithm based on the social behavior of swarms, which can solve discontinuous, nonconvex and nonlinear problems efficiently. The proposed algorithm can converge to the global optimal solution, and numerical example demonstrates that the proposed algorithm can guarantee the fast convergence within a few iterations. 相似文献
19.
在交通与物流网络系统规划中的许多决策问题可以归结为双层规划模型, 这类问题大多属于非凸优化问题. 现有算法要么难以获得全局最优解, 要么在解决大规模问题时存在算法复杂度及计算效率问题. 本文基于 进化博弈及多目标优化非支配排序的思想设计了层次粒子群算法, 通过两个粒子群算法的交互迭代来模拟 决策者之间的博弈寻优过程, 从而获得使各方利益最大化的双层规划问题的最优解. 最后通过测试函数验 证算法的有效性. 相似文献
20.
贝叶斯网络结构学习是数据挖掘与知识发现领域的主要研究技术之一,在网络结构的搜索空间相对较大的情况下,已提出的相关算法往往都会存在算法收敛速度慢、学习到的结果准确性较差的缺陷。提出一种信息论结合粒子群优化的算法,利用互信息限制粒子的初始化,使得粒子群优化算法能在较短的时间内收敛,应用ASIA网络作为仿真模型,并与K2算法比较。实验结果表明,提出的算法能够快速、准确地得到贝叶斯网络结构。 相似文献