首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Members of the Hedgehog (Hh) family of signaling proteins are powerful regulators of developmental processes in many organisms and have been implicated in many human disease states. Here we report the results of a genome-wide RNA interference screen in Drosophila melanogaster cells for new components of the Hh signaling pathway. The screen identified hundreds of potential new regulators of Hh signaling, including many large protein complexes with pleiotropic effects, such as the coat protein complex I (COPI) complex, the ribosome and the proteasome. We identified the multimeric protein phosphatase 2A (PP2A) and two new kinases, the D. melanogaster orthologs of the vertebrate PITSLRE and cyclin-dependent kinase-9 (CDK9) kinases, as Hh regulators. We also identified a large group of constitutive and alternative splicing factors, two nucleoporins involved in mRNA export and several RNA-regulatory proteins as potent regulators of Hh signal transduction, indicating that splicing regulation and mRNA transport have a previously unrecognized role in Hh signaling. Finally, we showed that several of these genes have conserved roles in mammalian Hh signaling.  相似文献   

3.
4.
Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.  相似文献   

5.
A novel endothelial-derived lipase that modulates HDL metabolism   总被引:31,自引:0,他引:31  
High-density lipoprotein (HDL) cholesterol levels are inversely associated with risk of atherosclerotic cardiovascular disease. At least 50% of the variation in HDL cholesterol levels is genetically determined, but the genes responsible for variation in HDL levels have not been fully elucidated. Lipoprotein lipase (LPL) and hepatic lipase (HL), two members of the triacylglyerol (TG) lipase family, both influence HDL metabolism and the HL (LIPC) locus has been associated with variation in HDL cholesterol levels in humans. We describe here the cloning and in vivo functional analysis of a new member of the TG lipase family. In contrast to other family members, this new lipase is synthesized by endothelial cells in vitro and thus has been termed endothelial lipase (encoded by the LIPG gene). EL is expressed in vivo in organs including liver, lung, kidney and placenta, but not in skeletal muscle. In contrast to LPL and HL, EL has a lid of only 19 residues. EL has substantial phospholipase activity, but less triglyceride lipase activity. Overexpression of EL in mice reduced plasma concentrations of HDL cholesterol and its major protein apolipoprotein A-I. The endothelial expression, enzymatic profile and in vivo effects of EL suggest that it may have a role in lipoprotein metabolism and vascular biology.  相似文献   

6.
X-linked dominant Conradi-Hünermann syndrome (CDPX2; MIM 302960) is one of a group of disorders with aberrant punctate calcification in cartilage, or chondrodysplasia punctata (CDP). This is most prominent around the vertebral column, pelvis and long bones in CPDX2. Additionally, CDPX2 patients may have asymmetric rhizomesomelia, sectorial cataracts, patchy alopecia, ichthyosis and atrophoderma. The phenotype in CDPX2 females ranges from stillborn to mildly affected individuals identified in adulthood. CDPX2 is presumed lethal in males, although a few affected males have been reported. We found increased 8(9)-cholestenol and 8-dehydrocholesterol in tissue samples from seven female probands with CDPX2 (ref. 4). This pattern of accumulated cholesterol intermediates suggested a deficiency of 3beta-hydroxysteroid-delta8,delta7-isomerase (sterol-delta8-isomerase), which catalyses an intermediate step in the conversion of lanosterol to cholesterol. A candidate gene encoding a sterol-delta8-isomerase (EBP) has been identified and mapped to Xp11.22-p11.23 (refs 5,6). Using SSCP analysis and sequencing of genomic DNA, we found EBP mutations in all probands. We confirmed the functional significance of two missense alleles by expressing them in a sterol-delta8-isomerase-deficient yeast strain. Our results indicate that defects in sterol-delta8-isomerase cause CDPX2 and suggest a role for sterols in bone development.  相似文献   

7.
X-linked dominant disorders that are exclusively lethal prenatally in hemizygous males have been described in human and mouse. None of the genes responsible has been isolated in either species. The bare patches (Bpa) and striated (Str) mouse mutations were originally identified in female offspring of X-irradiated males. Subsequently, additional independent alleles were described. We have previously mapped these X-linked dominant, male-lethal mutations to an overlapping region of 600 kb that is homologous to human Xq28 (ref. 4) and identified several candidate genes in this interval. Here we report mutations in one of these genes, Nsdhl, encoding an NAD(P)H steroid dehydrogenase-like protein, in two independent Bpa and three independent Str alleles. Quantitative analysis of sterols from tissues of affected Bpa mice support a role for Nsdhl in cholesterol biosynthesis. Our results demonstrate that Bpa and Str are allelic mutations and identify the first mammalian locus associated with an X-linked dominant, male-lethal phenotype. They also expand the spectrum of phenotypes associated with abnormalities of cholesterol metabolism.  相似文献   

8.
Mutations in PCSK9 cause autosomal dominant hypercholesterolemia   总被引:22,自引:0,他引:22  
Autosomal dominant hypercholesterolemia (ADH; OMIM144400), a risk factor for coronary heart disease, is characterized by an increase in low-density lipoprotein cholesterol levels that is associated with mutations in the genes LDLR (encoding low-density lipoprotein receptor) or APOB (encoding apolipoprotein B). We mapped a third locus associated with ADH, HCHOLA3 at 1p32, and now report two mutations in the gene PCSK9 (encoding proprotein convertase subtilisin/kexin type 9) that cause ADH. PCSK9 encodes NARC-1 (neural apoptosis regulated convertase), a newly identified human subtilase that is highly expressed in the liver and contributes to cholesterol homeostasis.  相似文献   

9.
Wnt signaling defines the colonic epithelial progenitor cell phenotype, and mutations in the gene adenomatous polyposis coli (APC) that activate the Wnt pathway cause the familial adenomatous polyposis coli (FAP) syndrome and most sporadic colon cancers. The mechanisms that regulate the transition of epithelial precursor cells into their differentiated derivatives are poorly characterized. We report that Indian hedgehog (Ihh) is expressed by mature colonocytes and regulates their differentiation in vitro and in vivo. Hedgehog (Hh) signaling restricts the expression of Wnt targets to the base of the colonic crypt in vivo, and transfection of Ihh into colon cancer cells leads to a downregulation of both components of the nuclear TCF4-beta-catenin complex and abrogates endogenous Wnt signaling in vitro. In turn, expression of Ihh is downregulated in polyps of individuals with FAP and expression of doxycycline-inducible dominant negative TCF4 (dnTCF4) restores Ihh expression in APC mutant DLD-1 colon cancer cells. These data identify a new Wnt-Hh axis in colonic epithelial renewal.  相似文献   

10.
Cross-talk and decision making in MAP kinase pathways   总被引:1,自引:0,他引:1  
Cells must respond specifically to different environmental stimuli in order to survive. The signal transduction pathways involved in sensing these stimuli often share the same or homologous proteins. Despite potential cross-wiring, cells show specificity of response. We show, through modeling, that the physiological response of such pathways exposed to simultaneous and temporally ordered inputs can demonstrate system-level mechanisms by which pathways achieve specificity. We apply these results to the hyperosmolar and pheromone mitogen-activated protein (MAP) kinase pathways in the yeast Saccharomyces cerevisiae. These two pathways specifically sense osmolar and pheromone signals, despite sharing a MAPKKK, Ste11, and having homologous MAPKs (Fus3 and Hog1). We show that in a single cell, the pathways are bistable over a range of inputs, and the cell responds to only one stimulus even when exposed to both. Our results imply that these pathways achieve specificity by filtering out spurious cross-talk through mutual inhibition. The variability between cells allows for heterogeneity of the decisions.  相似文献   

11.
Mutations in the gene encoding ATP-binding cassette transporter 1 ( ABC1) have been reported in Tangier disease (TD), an autosomal recessive disorder that is characterized by almost complete absence of plasma high-density lipoprotein (HDL), deposition of cholesteryl esters in the reticulo-endothelial system (RES) and aberrant cellular lipid trafficking. We demonstrate here that mice with a targeted inactivation of Abc1 display morphologic abnormalities and perturbations in their lipoprotein metabolism concordant with TD. ABC1 is expressed on the plasma membrane and the Golgi complex, mediates apo-AI associated export of cholesterol and phospholipids from the cell, and is regulated by cholesterol flux. Structural and functional abnormalities in caveolar processing and the trans-Golgi secretory pathway of cells lacking functional ABC1 indicate that lipid export processes involving vesicular budding between the Golgi and the plasma membrane are severely disturbed.  相似文献   

12.
13.
14.
The alymphoplasia (aly) mutation of mouse is autosomal recessive and characterized by the systemic absence of lymph nodes (LN) and Peyer's patches (PP) and disorganized splenic and thymic structures with immunodeficiency. Although recent reports have shown that the interaction between lymphotoxin (LT) and the LT beta-receptor (Ltbeta r, encoded by Ltbr) provides a critical signal for LN genesis in mice, the aly locus on chromosome 11 is distinct from those for LT and its receptor. We found that the aly allele carries a point mutation causing an amino acid substitution in the carboxy-terminal interaction domain of Nf-kappa b-inducing kinase (Nik, encoded by the gene Nik). Transgenic complementation with wild-type Nik restored the normal structures of LN, PP, spleen and thymus, and the normal immune response in aly/aly mice. In addition, the aly mutation in a kinase domain-truncated Nik abolished its dominant-negative effect on Nf-kappa b activation induced by an excess of Ltbeta r. Our observations agree with previous reports that Ltbeta r-deficient mice showed defects in LN genesis and that Nik is a common mediator of Nf-kappa b activation by the tumour necrosis factor (TNF) receptor family. Nik is able to interact with members of the TRAF family (Traf1, 2, 3, 5 and 6), suggesting it acts downstream of TRAF-associating receptor signalling pathways, including Tnfr, Cd40, Cd30 and Ltbeta r. The phenotypes of aly/aly mice are more severe than those of Ltbr-/- mice, however, indicating involvement of Nik in signal transduction mediated by other receptors.  相似文献   

15.
The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity. Shp2 can potentiate signalling through the MAP-kinase pathway and is required during early mouse development for gastrulation. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.  相似文献   

16.
Pelger-Hu?t anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41-43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope-heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.  相似文献   

17.
Tangier disease (TD) is an autosomal recessive disorder of lipid metabolism. It is characterized by absence of plasma high-density lipoprotein (HDL) and deposition of cholesteryl esters in the reticulo-endothelial system with splenomegaly and enlargement of tonsils and lymph nodes. Although low HDL cholesterol is associated with an increased risk for coronary artery disease, this condition is not consistently found in TD pedigrees. Metabolic studies in TD patients have revealed a rapid catabolism of HDL and its precursors. In contrast to normal mononuclear phagocytes (MNP), MNP from TD individuals degrade internalized HDL in unusual lysosomes, indicating a defect in cellular lipid metabolism. HDL-mediated cholesterol efflux and intracellular lipid trafficking and turnover are abnormal in TD fibroblasts, which have a reduced in vitro growth rate. The TD locus has been mapped to chromosome 9q31. Here we present evidence that TD is caused by mutations in ABC1, encoding a member of the ATP-binding cassette (ABC) transporter family, located on chromosome 9q22-31. We have analysed five kindreds with TD and identified seven different mutations, including three that are expected to impair the function of the gene product. The identification of ABC1 as the TD locus has implications for the understanding of cellular HDL metabolism and reverse cholesterol transport, and its association with premature cardiovascular disease.  相似文献   

18.
Ollier disease and Maffucci syndrome are characterized by multiple central cartilaginous tumors that are accompanied by soft tissue hemangiomas in Maffucci syndrome. We show that in 37 of 40 individuals with these syndromes, at least one tumor has a mutation in isocitrate dehydrogenase 1 (IDH1) or in IDH2, 65% of which result in a R132C substitution in the protein. In 18 of 19 individuals with more than one tumor analyzed, all tumors from a given individual shared the same IDH1 mutation affecting Arg132. In 2 of 12 subjects, a low level of mutated DNA was identified in non-neoplastic tissue. The levels of the metabolite 2HG were measured in a series of central cartilaginous and vascular tumors, including samples from syndromic and nonsyndromic subjects, and these levels correlated strongly with the presence of IDH1 mutations. The findings are compatible with a model in which IDH1 or IDH2 mutations represent early post-zygotic occurrences in individuals with these syndromes.  相似文献   

19.
20.
A genome-wide survey of RAS transformation targets   总被引:28,自引:0,他引:28  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号