共查询到20条相似文献,搜索用时 15 毫秒
1.
WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators 总被引:2,自引:0,他引:2
Leibfried A To JP Busch W Stehling S Kehle A Demar M Kieber JJ Lohmann JU 《Nature》2005,438(7071):1172-1175
2.
3.
The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response 总被引:11,自引:0,他引:11
Zheng H You H Zhou XZ Murray SA Uchida T Wulf G Gu L Tang X Lu KP Xiao ZX 《Nature》2002,419(6909):849-853
p53 is activated in response to various genotoxic stresses resulting in cell cycle arrest or apoptosis. It is well documented that DNA damage leads to phosphorylation and activation of p53 (refs 1-3), yet how p53 is activated is still not fully understood. Here we report that DNA damage specifically induces p53 phosphorylation on Ser/Thr-Pro motifs, which facilitates its interaction with Pin1, a member of peptidyl-prolyl isomerase. Furthermore, the interaction of Pin1 with p53 is dependent on the phosphorylation that is induced by DNA damage. Consequently, Pin1 stimulates the DNA-binding activity and transactivation function of p53. The Pin1-mediated p53 activation requires the WW domain, a phosphorylated Ser/Thr-Pro motif interaction module, and the isomerase activity of Pin1. Moreover, Pin1-deficient cells are defective in p53 activation and timely accumulation of p53 protein, and exhibit an impaired checkpoint control in response to DNA damage. Together, these data suggest a mechanism for p53 regulation in cellular response to genotoxic stress. 相似文献
4.
The product of the gene RCC1 (regulator of chromosome condensation) in a BHK cell line is involved in the control of mitotic events. Homologous genes have been found in Xenopus, Drosophila and yeast. A human genomic DNA fragment and complementary DNA that complement a temperature-sensitive mutation of RCC1 in BHK21 cells encode a protein of relative molecular mass 45,000 (Mr 45K) which is located in the nucleus and binds to chromatin. We have recently isolated a protein from HeLa cells that strongly binds an anti-RCC1 antibody and has the same molecular mass, DNA-binding properties, and amino-acid sequence as the 205 residues already identified. HeLa cell RCC1 is complexed to a protein of Mr 25K. We have shown that this 25K protein has a sequence homologous to the translated reading frame of TC4, a cDNA found by screening a human teratocarcinoma cDNA library with oligonucleotides coding for a ras consensus sequence, and that the protein binds GDP and GTP. We have referred to this protein as the Ran protein (ras-related nuclear protein). In addition to the fraction of Ran protein complexed to RCC1, a 25-fold molar excess of the protein over RCC1 was found in the nucleoplasm of HeLa cells. Here we show that RCC1 specifically catalyses the exchange of guanine nucleotides on the Ran protein but not on the protein c-Ha-ras p21 (p21ras). 相似文献
5.
Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis 总被引:56,自引:0,他引:56
Homologies among bacterial signal transduction proteins suggest that a common mechanism mediates processes such as chemotaxis, osmoregulation, sporulation, virulence, and responses to nitrogen, phosphorous and oxygen deprivation. A common kinase-mediated phosphotransfer reaction has recently been identified in chemotaxis, nitrogen regulation, and osmoregulation. In chemotaxis, the CheA kinase passes a phosphoryl group to the cytoplasmic protein CheY, which functions as a phosphorylation-activated switch that interacts with flagellar components to regulate motility. We report here the X-ray crystal structure of the Salmonella typhimurium CheY protein. The determination of the structure was facilitated by the use of site-specific mutagenesis to engineer heavy-atom binding sites. CheY is a single-domain protein composed of a doubly wound five-stranded parallel beta-sheet. The phosphoacceptor site in CheY is probably a cluster of aspartic-acid side chains near the C-terminal edge of the beta-sheet. The pattern of sequence similarity of CheY with components of other regulatory systems can be interpreted in the light of the CheY structure and supports the view that this family of proteins have a common structural motif and active site. 相似文献
6.
随着负载运算性能的提高,对供电的开关变换器电压调节模块(Voltage Regulator Module,VRM)提出了越来越高的要求,快速的负载响应性能就是被高度关注的性能之一.本文分析了影响VRM动态特性的因素,分类介绍了目前用于提高负载动态响应特性的方法,并对各类方法的优点与缺点进行论述. 相似文献
7.
The NAD-dependent protein deacetylase Sir2 (silent information regulator 2) regulates lifespan in several organisms. SIRT1, the mammalian orthologue of yeast Sir2, participates in various cellular functions and possibly tumorigenesis. Whereas the cellular functions of SIRT1 have been extensively investigated, less is known about the regulation of SIRT1 activity. Here we show that Deleted in Breast Cancer-1 (DBC1), initially cloned from a region (8p21) homozygously deleted in breast cancers, forms a stable complex with SIRT1. DBC1 directly interacts with SIRT1 and inhibits SIRT1 activity in vitro and in vivo. Downregulation of DBC1 expression potentiates SIRT1-dependent inhibition of apoptosis induced by genotoxic stress. Our results shed new light on the regulation of SIRT1 and have important implications in understanding the molecular mechanism of ageing and cancer. 相似文献
8.
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis in mammals and is an attractive target for drug discovery against diabetes, obesity and other diseases. The AMPK homologue in Saccharomyces cerevisiae, known as SNF1, is essential for responses to glucose starvation as well as for other cellular processes, although SNF1 seems to be activated by a ligand other than AMP. Here we report the crystal structure at 2.6 A resolution of the heterotrimer core of SNF1. The ligand-binding site in the gamma-subunit (Snf4) has clear structural differences from that of the Schizosaccharomyces pombe enzyme, although our crystallographic data indicate that AMP can also bind to Snf4. The glycogen-binding domain in the beta-subunit (Sip2) interacts with Snf4 in the heterotrimer but should still be able to bind carbohydrates. Our structure is supported by a large body of biochemical and genetic data on this complex. Most significantly, the structure reveals that part of the regulatory sequence in the alpha-subunit (Snf1) is sequestered by Snf4, demonstrating a direct interaction between the alpha- and gamma-subunits and indicating that our structure may represent the heterotrimer core of SNF1 in its activated state. 相似文献
9.
Protein backbones and side chains display varying degrees of flexibility, which allows many slightly different but related conformational substates to occur. Such fluctuations are known to differ in both timescale and magnitude, from rotation of methyl groups (nanoseconds) to the flipping of buried tyrosine rings (seconds). Because many mechanisms for protein function require conformational change, it has been proposed that some of these ground-state fluctuations are related to protein function. But exactly which aspects of motion are functionally relevant remains to be determined. Only a few examples so far exist where function can be correlated to structural fluctuations with known magnitude and timescale. As part of an investigation of the mechanism of action of the Bacillus subtilis response regulator SpoOF, we have explored the relationship between the motional characteristics and protein-protein interactions. Here we use a set of nuclear magnetic resonance 15N relaxation measurements to determine the relative timescales of SpoOF backbone fluctuations on the picosecond-to-millisecond timescale. We show that regions having motion on the millisecond timescale correlate with residues and surfaces that are known to be critical for protein-protein interactions. 相似文献
10.
NLRX1 is a regulator of mitochondrial antiviral immunity 总被引:1,自引:0,他引:1
Moore CB Bergstralh DT Duncan JA Lei Y Morrison TE Zimmermann AG Accavitti-Loper MA Madden VJ Sun L Ye Z Lich JD Heise MT Chen Z Ting JP 《Nature》2008,451(7178):573-577
The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-beta promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses. 相似文献
11.
Telomere dysfunction may result in chromosomal abnormalities, DNA damage responses, and even cancer. Early studies in lower organisms have helped to establish the crucial role of telomerase and telomeric proteins in maintaining telomere length and protecting telomere ends. In Oxytricha nova, telomere G-overhangs are protected by the TEBP-alpha/beta heterodimer. Human telomeres contain duplex telomeric repeats with 3' single-stranded G-overhangs, and may fold into a t-loop structure that helps to shield them from being recognized as DNA breaks. Additionally, the TEBP-alpha homologue, POT1, which binds telomeric single-stranded DNA (ssDNA), associates with multiple telomeric proteins (for example, TPP1, TIN2, TRF1, TRF2 and RAP1) to form the six-protein telosome/shelterin and other subcomplexes. These telomeric protein complexes in turn interact with diverse pathways to form the telomere interactome for telomere maintenance. However, the mechanisms by which the POT1-containing telosome communicates with telomerase to regulate telomeres remain to be elucidated. Here we demonstrate that TPP1 is a putative mammalian homologue of TEBP-beta and contains a predicted amino-terminal oligonucleotide/oligosaccharide binding (OB) fold. TPP1-POT1 association enhanced POT1 affinity for telomeric ssDNA. In addition, the TPP1 OB fold, as well as POT1-TPP1 binding, seemed critical for POT1-mediated telomere-length control and telomere-end protection in human cells. Disruption of POT1-TPP1 interaction by dominant negative TPP1 expression or RNA interference (RNAi) resulted in telomere-length alteration and DNA damage responses. Furthermore, we offer evidence that TPP1 associates with the telomerase in a TPP1-OB-fold-dependent manner, providing a physical link between telomerase and the telosome/shelterin complex. Our findings highlight the critical role of TPP1 in telomere maintenance, and support a yin-yang model in which TPP1 and POT1 function as a unit to protect human telomeres, by both positively and negatively regulating telomerase access to telomere DNA. 相似文献
12.
13.
Activated T lymphocytes differentiate into effector cells tailored to meet disparate challenges to host integrity. For example, type 1 and type 2 helper (T(H)1 and T(H)2) cells secrete cytokines that enhance cell-mediated and humoral immunity, respectively. The chemokine monocyte chemoattractant protein-1 (MCP-1) can stimulate interleukin-4 production and its overexpression is associated with defects in cell-mediated immunity, indicating that it might be involved in T(H)2 polarization. Here we show that MCP-1-deficient mice are unable to mount T(H)2 responses. Lymph node cells from immunized MCP-1(-/-) mice synthesize extremely low levels of interleukin-4, interleukin-5 and interleukin-10, but normal amounts of interferon-gamma and interleukin-2. Consequently, these mice do not accomplish the immunoglobulin subclass switch that is characteristic of T(H)2 responses and are resistant to Leishmania major. These effects are direct rather than due to abnormal cell migration, because the trafficking of naive T cells is undisturbed in MCP-1(-/-) mice despite the presence of MCP-1-expressing cells in secondary lymphoid organs of wild-type mice. Thus, MCP-1 influences both innate immunity, through effects on monocytes, and adaptive immunity, through control of T helper cell polarization. 相似文献
14.
Role for the p53 homologue p73 in E2F-1-induced apoptosis 总被引:20,自引:0,他引:20
Irwin M Marin MC Phillips AC Seelan RS Smith DI Liu W Flores ER Tsai KY Jacks T Vousden KH Kaelin WG 《Nature》2000,407(6804):645-648
15.
张必松 《浙江师范大学学报(自然科学版)》2001,24(2):174-177
同系物概念沿用至今,已经有不少学者提出了异议,但都没有从根本上去思考,分析同系物理概念的本质和非本质属性,为了明确地界定同系物,对同系物概念大胆地提出了质疑,从逻辑学的角度论证了同系物的共同特征与本质属性,提出了“具有同一个通式且结构特征相似的物质互称为同系物”的新概念,可望从根本上解决同系物数学中存在的问题。 相似文献
16.
A human homologue of the yeast HDEL receptor 总被引:51,自引:0,他引:51
Retention of resident proteins in the lumen of the endoplasmic reticulum is achieved in both yeast and animal cells by their continual retrieval from the cis-Golgi, or a pre-Golgi compartment. Sorting of these proteins is dependent on a C-terminal tetrapeptide signal, usually Lys-Asp-Glu-Leu (KDEL in the single letter code) in animal cells, His-Asp-Glu-Leu (HDEL) in Saccharomyces cerevisiae. There is evidence that the ERD2 gene encodes the sorting receptor that recognizes HDEL in yeast; its product is an integral membrane protein of relative molecular mass 26,000 (26K) that is not glycosylated. In contrast, Vaux et al. suggest that the mammalian KDEL receptor is a 72K glycoprotein that they detected using an anti-idiotypic antibody approach. If this were so, it would indicate a surprising divergence of the retrieval machinery between yeast and animal cells. We report here that human cells express a protein similar in sequence, size and properties to the ERD2 product, and propose that this protein is the human KDEL receptor. 相似文献
17.
ClC Cl- channels make up a large molecular family, ubiquitous with respect to both organisms and cell types. In eukaryotes, these channels fulfill numerous biological roles requiring gated anion conductance, from regulating skeletal muscle excitability to facilitating endosomal acidification by (H+)ATPases. In prokaryotes, ClC functions are unknown except in Escherichia coli, where the ClC-ec1 protein promotes H+ extrusion activated in the extreme acid-resistance response common to enteric bacteria. Recently, the high-resolution structure of ClC-ec1 was solved by X-ray crystallography. This primal prokaryotic ClC structure has productively guided understanding of gating and anion permeation in the extensively studied eukaryotic ClC channels. We now show that this bacterial homologue is not an ion channel, but rather a H+-Cl- exchange transporter. As the same molecular architecture can support two fundamentally different transport mechanisms, it seems that the structural boundary separating channels and transporters is not as clear cut as generally thought. 相似文献
18.
19.
20.
Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis 总被引:3,自引:0,他引:3
The apical transmembrane protein Crumbs is a central regulator of epithelial apical-basal polarity in Drosophila. Loss-of-function mutations in the human homologue of Crumbs, CRB1 (RP12), cause recessive retinal dystrophies, including retinitis pigmentosa. Here we show that Crumbs and CRB1 localize to corresponding subdomains of the photoreceptor apical plasma membrane: the stalk of the Drosophila photoreceptor and the inner segment of mammalian photoreceptors. These subdomains support the morphogenesis and orientation of the photosensitive membrane organelles: rhabdomeres and outer segments, respectively. Drosophila Crumbs is required to maintain zonula adherens integrity during the rapid apical membrane expansion that builds the rhabdomere. Crumbs also regulates stalk development by stabilizing the membrane-associated spectrin cytoskeleton, a function mechanistically distinct from its role in epithelial apical-basal polarity. We propose that Crumbs is a central component of a molecular scaffold that controls zonula adherens assembly and defines the stalk as an apical membrane subdomain. Defects in such scaffolds may contribute to human CRB1-related retinal dystrophies. 相似文献