首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
聚醚接枝聚羧酸系高效减水剂合成   总被引:1,自引:0,他引:1  
采用烯丙基聚氧乙烯醚(APEG)、甲基丙烯酸(MAA)、马来酸酐(MA)以及甲基丙烯磺酸钠(MAS)为单体,以过硫酸铵为引发剂,在水溶液中共聚合成聚醚接枝的聚羧酸系减水剂.考察单体摩尔比、引发剂用量、聚合温度以及聚合时间等因素对减水剂分散性能的影响.研究结果表明:最佳合成工艺条件为n(MA)∶n(MAA)∶n(APEG)∶n(MAS)=2.5∶3.0∶1.0∶0.5,引发剂用量为单体总质量的5%,聚合温度为90℃,反应时间4~5 h,合成的减水剂其水泥净浆流动度可达235 mm,说明研究合成的聚羧酸系减水剂对水泥具有较好的分散性.  相似文献   

2.
采用可聚合单体直接共聚法,以过硫酸铵(APS)为引发剂,选用丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)、烯丙基聚氧乙烯醚(JFB-23)为单体合成了聚羧酸系减水剂,考察了SMAS、从、JFB-23物质的量之比、引发剂用量、聚合温度、滴加时间和保温时间对合成的聚羧酸减水剂性能的影响.减水剂的结构和分子质量分别用FTIR和GPC进行表征.结果表明最佳实验条件为SMAS、AA、JFB-23的物质的量之比为0.8∶3∶1,引发剂用量为单体总质量的4%,聚合温度为85℃,滴加时间为2h,保温时间2.5h.  相似文献   

3.
以甲基丙烯酸(MAA)、甲基丙烯磺酸钠(MAS)、甲氧基聚乙二醇甲基丙烯酸酯(PMA45)为共聚单体,以过硫酸铵为引发剂,合成了一系列聚羧酸高效减水剂.通过测定硬化砂浆早期强度以及采用扫描电镜观察早期水泥石形貌,研究了不同原料配比对聚羧酸高效减水剂早强性能的影响.结果表明,聚羧酸高效减水剂早强性能随着PMA45用量的增...  相似文献   

4.
聚羧酸高效水泥减水剂的合成及性能   总被引:2,自引:0,他引:2  
采用先酯化后共聚的方法合成聚羧酸系减水剂,考察以甲基丙烯酸(MMA)和甲氧基聚乙二醇(MPEG)为原料酯化合成大单体甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)过程中阻聚剂对苯二酚用量、酸醇摩尔比、反应温度等对酯化率的影响.以大单体MPEGMA与马来酸酐、MMA和2丙烯酰胺基2甲基丙烷磺酸共聚合成聚羧酸类减水剂,考察减水剂合成过程中MPEG相对分子质量和引发剂过硫酸铵用量以及减水剂掺量对减水剂性能的影响.结果表明:阻聚剂质量分数为0.4%、酸醇摩尔比为1.5:1、反应温度为120℃时,酯化率可达到92.3%.当MPEG相对分子质量为1000、引发剂的质量分数为5%,合成的减水剂掺量质量分数为0.3%时,水泥的净浆流动度可达281mm.  相似文献   

5.
以自制的活性大单体聚乙二醇单甲醚丙烯酸酯(MPEGAA)、丙烯酸(AA)和丙烯酰胺(AM)为原料,在水溶液中共聚合成了酰胺型MPEGAA-AA-AM聚羧酸高效减水剂。重点考察了各单体的物质的量比、引发剂(APS)用量、聚合温度和聚合时间等合成工艺条件对酰胺型MPEGAA-AA-AM聚羧酸高效减水剂的影响。结果表明:最佳的高效减水剂的合成条件是:n(MPEGAA)∶n(AA)∶n(AM)=1.0∶1.5∶1.0,引发剂APS质量分数为单体总质量的5%,聚合温度和反应时间分别为85℃和5 h。在该条件下合成的酰胺型MPEGAA-AA-AM聚羧酸高效减水剂,90 min后流动度损失率仅为2%。  相似文献   

6.
本体聚合法制备保塑-减缩型聚羧酸系减水剂   总被引:1,自引:0,他引:1  
以丙烯醇聚氧乙烯醚(APEG)和二乙二醇单丁醚单马来酸酯(MADGBE)为原料,在本体聚合条件下合成聚羧酸系减水剂(PCE).研究了单体摩尔比、聚合温度以及引发剂的投料方式对产物性能的影响.试验结果表明,当MADGBE与APEG的摩尔比为3.5∶1,聚合温度为90℃,引发剂均分三份后分批加入所制备的聚羧酸系减水剂具有良好的混凝土坍落度保持性,且显著降低了混凝土的收缩率,但在一定程度上延长了混凝土的凝结时间.最后,利用红外光谱对产物分子结构进行表征,结果表明所得产物分子结构与预期相符.  相似文献   

7.
以聚乙二醇单甲醚衣康酸酯、聚乙二醇单甲醚甲基丙烯酸酯、N-[4-(磺酰胺)苯基]丙烯酰胺为聚合单体,采用大单体直接共聚法,合成早强型聚羧酸系高分子减水剂.对单体摩尔分数、引发剂用量、反应温度等反应条件进行系统考察,得到最佳合成工艺参数:聚乙二醇单甲醚衣康酸酯、聚乙二醇单甲醚甲基丙烯酸酯、N-[4-(磺酰胺)苯基]丙烯酰胺的摩尔分数分别为35%,35%,30%,引发剂用量为3%(占单体总量),反应温度80℃,反应时间5 h.与传统聚羧酸系高分子减水剂进行对比的实验结果显示,所合成的早强型聚羧酸系高分子减水剂在减水率及抗压强度等方面都有更好的效果.  相似文献   

8.
以活性大单体聚乙二醇单甲醚甲基丙烯酸酯(MPEGMA)、甲基丙烯酸、马来酸酐和烯丙基磺酸钠为原料,在水溶液中共聚合成聚羧酸系混凝土高效减水剂.考察了单体的摩尔配比、引发剂种类和用量以及甲氧基聚乙二醇(MPEG)分子量等合成条件对减水剂性能的影响.结果表明,最佳的减水剂合成条件为:马来酸酐、MPEGMA、甲基丙烯酸和烯丙基磺酸钠摩尔比为3:4:1:2,引发剂过硫酸铵用量为单体总质量的2.0%,MPEG分子量为1 300.在上述条件下制备得到的聚羧酸减水剂具有良好的分散性和保塑性,掺入该减水剂0.3%(质量分数)的水泥净浆流动度可达到290 mm.  相似文献   

9.
采用水溶液自由基共聚的方法合成聚羧酸高效减水剂, 并通过红外光谱确定了聚羧酸高效减水剂的结构, 考察了聚羧酸高效减水剂侧链的长度、
减水剂在水泥中的掺量、 测试温度等对水泥净浆流动度的影响. 结果表明: 长侧链比短侧链的减水剂流动性更好; 减水剂在水泥中的掺量为其质量分数的0.2%; 随测试温度的升高, 水泥净浆流动度反而降低. 将新合成的聚羧酸高效减水剂与国内外常用产品进行比较, 结果显示性质优良.  相似文献   

10.
木质素磺酸钙改性聚羧酸的研制及其保水性能   总被引:1,自引:0,他引:1  
为解决工程上聚羧酸高效减水剂(PCE)对掺量敏感和容易出现离析泌水的问题,采用水溶液聚合法和复配法,以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)、丙烯酸(AA)、木质素磺酸钙(CL)为原料,制备共聚型木质素磺酸钙改性聚羧酸高效减水剂(GCL-PCE)和复配型木质素磺酸钙改性聚羧酸高效减水剂(FCLPCE),研究了木质素磺酸钙用量对两者保水性等性能的影响,并与改性前的聚羧酸高效减水剂进行对比.通过FT-IR证明,GCL-PCE与FCL-PCE被成功制备,随着CL用量的增加,掺FCL-PCE和GCL-PCE的砂浆泌水率比总体呈先上升后下降的趋势,掺FCL-PCE的砂浆泌水率比均小于100%,保水性好,符合高效减水剂泌水率比≤100%的要求.当CL用量达10%,GCL-PCE掺量达0.2%时的减水率为23.16%;当CL用量相同时,GCL-PCE的减水分散作用较FCL-PCE更佳.  相似文献   

11.
以马来酸酐(MA)、丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体,采用水溶液聚合法制备了一种MA/AA/AMPS聚羧酸高效陶瓷减水剂.通过单因素实验以考察合成条件对聚合反应的影响,采用FT-IR和POM分别表征其官能团结构及分散情况,并进一步利用SEM图片观察陶瓷坯体料浆形貌.结果表明,水溶性MA/AA/AMPS聚羧酸高效陶瓷减水剂的合成条件对其性能有很大影响.各单体的摩尔数、引发剂的用量、聚合温度等因素都在一定程度上影响陶瓷坯体料浆体系的性能.  相似文献   

12.
以丙烯酸(AA)、马来酸酐(MA)和聚乙二醇(PEG)为原料,以过硫酸钾(KPS)为引发剂,通过原位酯化法合成P(AA-co-MA)/PEG三元共聚型聚羧酸减水剂,探讨各合成因素对减水剂性能的影响。研究表明,最佳合成工艺为:n(PEG):n(AA):n(MA)=1.0:1.2:1.0,引发剂用量为1.5%(相对PEG、AA和MA总物质的量分数)、聚合温度为80℃、反应时间为6h。此条件下制得的减水剂具有最优的水泥净浆流动度。  相似文献   

13.
采用丙烯酸(AA)和聚乙二醇单甲醚(MPEG)为主要反应原料,通过逐步滴加带水剂甲苯的方法,研究其主要反应条件对酯化率的影响。在温度为90℃的条件下,制备的聚羧酸减水剂的活性大单体聚乙二醇单甲醚丙烯酸酯(MPEGAA)酯化率高达99.6%,双键保留率高达91.5%。测试了应用该大单体所合成的聚羧酸减水剂与几种水泥的适应性和分散保持性。  相似文献   

14.
采用分子设计原理,用甲氧基聚乙二醇丙烯酸酯(MPEGAA)、丙烯酸(AA)和马来酸酐(MAD)制备聚羧酸系高效混凝土减水剂,考察了单体总浓度、引发剂浓度、反应温度等因素对高效减水剂聚合反应速率的影响,建立了聚合反应动力学关系式,即r∝cI0.590 3c0M.808 9e-5 465/T。通过测定水泥净浆流动度,考察了高效混凝土减水剂的减水性能,确定了较理想的合成工艺条件,即单体物质的量比n(MPEGAA)∶n(AA)∶n(MAD)=1∶1.50∶0.36,引发剂占单体总质量的2.5%,反应温度为60℃,反应时间为6h。  相似文献   

15.
MA-AA-MAS三元共聚物的制备及其阻垢性能研究   总被引:4,自引:0,他引:4  
以水为溶剂,过硫酸钾为引发剂,马来酸酐(MA)、丙烯酸(AA)和甲代烯丙基磺酸钠(MAS)为单体合成了三元共聚物.探讨了该共聚物转化率、平均分子质量、阻垢分散效果与单体配比、引发剂用量、反应温度、反应时间之间的关系.结果表明,当单体MA,AA,MAS物质的量比为3.0∶1.0∶0.6,引发剂质量分数为单体总量的14%,反应温度应控制在90℃,反应时间为4 h时,所制得的共聚物性能最佳,单体转化率为90.1%,对CaCO3和Ca3(PO4)2的阻垢率分别达到98.2%和92.1%.  相似文献   

16.
分别以丙烯酸羟乙酯(HEA)、丙烯酸羟丙酯(HPA)、衣康酸二甲酯(DEI)、富马酸二甲酯(DMF)作为功能小单体,丙烯酸和甲基烯丙基聚氧乙烯醚(HPEG)为主要原料,在氧化-还原体系下,成功制备了一系列缓释型聚羧酸减水剂(PCE)。采用红外光谱(FTIR)、核磁共振氢谱(1H NMR)等对目标产物的结构进行了表征。根据水泥净浆的流动性对比结果,确定了合成的减水剂在不同时间所达到的最大流动度,考察了不同酯类单体对聚羧酸减水剂的缓释性及分散保持性能的影响,并测试了水泥浆体的Zeta电位、PCE的吸附行为。结果表明: DEI的缓释效果优于HEA和HPA,水泥浆流动度在2 h内从190 mm达到255 mm,大大延长了减水剂PCE在水泥表面的吸附时间和流动度保持时间,在实际应用中具有良好的参考意义和应用前景。  相似文献   

17.
为探究泥粉和聚羧酸减水剂对水泥净浆流变性的影响,在掺入聚羧酸减水剂母液和两种复配助剂的基础上,分别外掺1%,2%,3%的高岭土型和蒙脱土型泥粉,并采用Bingham流变模型系统地研究泥粉掺量、种类和聚羧酸减水剂助剂对水泥净浆屈服应力及塑性粘度的影响规律.通过X射线(XRD)小角度衍射、总有机碳(TOC)、Zeta电位对宏观试验结果进行验证.结果表明:增大泥粉掺量可降低聚羧酸减水剂水泥净浆的流变性;高岭土型普通黏土对降低聚羧酸减水剂水泥净浆流变性的程度小于蒙脱土型膨润土;异戊烯基聚氧乙烯醚(TPEG类)保坍型助剂F1对水泥净浆流变性的促进作用大于异丁烯基聚氧乙烯醚(HPEG类)减水型助剂F2.  相似文献   

18.
从氯离子等温吸附、吸附动力学及吸附热力学3个方面,研究聚羧酸减水剂对水泥浆结合氯离子性能的影响,同时应用XRD微观测试技术研究其作用机理。结果表明:掺入聚羧酸减水剂使水泥浆体结合氯离子能力减弱,且水灰比越小,这种影响作用则越大;掺入聚羧酸减水剂的水泥浆体对氯离子的固化过程,短期内符合准一级动力学方程,表现为物理吸附,长期内符合准二级动力学方程,表现为化学结合,其中随着聚羧酸减水剂掺量的增大,吸附速率逐渐减小;聚羧酸减水剂使水泥浆结合氯离子过程中的自由能变、焓变和熵变都减小,且这个过程是自发、放热的;掺入聚羧酸减水剂主要影响水泥浆体对氯离子的物理吸附,对化学结合没有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号