首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于二叉树的SVM多类分类算法研究   总被引:3,自引:0,他引:3  
支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.介绍了基于二叉树的SVM多类分类算法,通过对其原理和实现方法的分析,对这些方法的优缺点进行了归纳和总结,给出了进一步的研究方向.  相似文献   

2.
文本分类是指按照预先定义的主题类别,为文档集合中的每个文档确定一个类别,文本分类是文本挖掘的一个重要内容。本文分别介绍了文本分类技术和支持向量机的概念,并阐述了支持向量机(SVM)在文本分类中的应用及其发展趋势。  相似文献   

3.
为降低训练分类器的运算复杂度,并解决支持向量机(SVM)对多类分类问题没有特别有效解决方法的问 题。提出了一种基于一类支持向量机的多分类贝叶斯算法,证明了基于径向基核函数的一类SVM的分类函数归 一化为密度函数,并将所得的概率密度函数用于构造二分类及多分类贝叶斯分类器。仿真实验将提出的多分类贝 叶斯算法应用于多类通信信号调制识别,结果表明:该算法的分类准确率不低于传统SVM多分类器,而在多类属、 每类训练样本数目较大的情况下训练所需的运算量和存储量仅是传统SVM多分类算法的0.5%大大减小了核 矩阵规模和  相似文献   

4.
对预处理后的指纹图像进行分类相关算法研究,提出一种无需迭代的指纹参考点定位方法,该算法具有简单、快速、效果好的优点;基于指纹方向场的半区域特征提取方法,采用二叉树结构的支持向量机多分类策略解决指纹的多分类问题.实验表明,分类精度良好.  相似文献   

5.
多类SVM分类算法的研究   总被引:3,自引:0,他引:3  
支持向量机(Support Vector Machine,SVM)是上世纪九十年代提出的一种基于小样本的新的统计学习方法,较好地解决了非线性、高维数、局部极小点等实际问题.文中分析了SVM基础理论并总结了目前存在的基于支持向量机的主要分类方法,包括"一对多"方法、"一对一"方法、决策有向无环图方法、基于二又树的多类分类方法和其它方法,并对各自的优缺点及性能做了比较.  相似文献   

6.
基于一类SVM的贝叶斯分类算法   总被引:1,自引:0,他引:1  
提出一种基于一类支持向量机(one-class SVM)的贝叶斯分类算法,该算法用一类SVM对类条件概率密度进行估计以构造贝叶斯分类器. 证明采用高斯核的一类SVM,其解可以归一化为密度函数,并把该密度函数看作类条件概率密度的平滑估计,构造贝叶斯分类器. 实际数据集上的实验结果表明,提出的分类算法测试准确率高于简单贝叶斯分类器与贝叶斯网络分类器,不低于传统二类SVM;比传统二类SVM需要计算的核矩阵规模更小,训练时间更短.  相似文献   

7.
对预处理后的指纹图像进行分类相关算法研究,提出一种无需迭代的指纹参考点定位方法,该算法具有简单、快速、效果好的优点;基于指纹方向场的半区域特征提取方法,采用二叉树结构的支持向量机多分类策略解决指纹的多分类问题.实验表明,分类精度良好.  相似文献   

8.
设计了一种基于统计的多层次分类算法:在一个树状的层次分类体系中,对文档进行自动分类时,首先从根结点开始找到对应的大类,然后递归往下直到找到对应的最底层子类.每一层中使用支持向量机作为分类模型,并使用类别均衡的方法解决数据稀疏的问题,在经过大规模网页语料训练后取得了很好的分类效果.  相似文献   

9.
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持...  相似文献   

10.
基于小波基的SVM多气体融合   总被引:4,自引:0,他引:4  
为了提高气体传感器在多气体环境下的检测灵敏度,基于小波对偶框架和支持向量核函数的条件,提出了一种支持向量小波核函数.该核函数具备小波的多尺度插值特性和稀疏变化特性,提高了模型的精度和迭代的收敛速度,适用于信号的局部分析、信噪分离和突变信号的检测,从而能在提高支持向量机(SVM:Support Vector Machine)泛化能力的同时,提高辨识效果,减少计算量.基于该核函数和正则化理论提出的最小二乘小波支持向量机用于非线性系统辨识,对sin c函数的逼近.该小波核得到的绝对误差不超过0.004;在多气体分析中,比RBF(Radial Base Function)核所得的偏差小18.3%.这些表明SVM小波核具有更好的泛化能力.  相似文献   

11.
基于数据分割和近邻对的快速SVM分类算法   总被引:1,自引:0,他引:1  
大样本的学习是支持向量机领域中的一个重要课题。基于数据分割和邻近对策略,提出了一种新的支持向量机分类算法。在新的算法中,首先利用c均-值聚类分别对数据集中的正负类进行聚类,把大数据集分割成互不相交的子集合;然后来自正负类的子集合两两组合形成多个二分类问题,并用SMO算法求解;最后用邻近对策略对未知数据进行识别。为了验证新算法的有效性,把它应用于5个UCI数据集,并和SMO算法做了比较。结果表明:新算法不仅大大地减少了大样本学习的训练时间,而且相应的测试精度几乎没有降低。  相似文献   

12.
提出了基于哈夫曼树的支持向量机多分类方法,该方法首先将1个多分类问题分解为多个2分类问题,针对每个2分类问题使用支持向量机2分类方法解决;然后根据相异度来决策分类的优先顺序,构建基于哈夫曼树的支持向量机多分类模型;最后使用勒卡斯开源数据集进行验证,并将它与传统的支持向量机多分类方法进行实验比较。实验结果表明:新的方法在分类速度和分类精度上较传统的支持向量机多分类方法优越。  相似文献   

13.
多元分类器通常需要在训练时间和分类精度之间折衷.提出了加权阈值策略和一对多分类方法的改进算法 OVA WWT,以增加结果融合的公平性,从而提高分类精度.基于OVA WWT策略和SVMlight二元分类器,实现了基于SVMlight的多元分类器MSVMlight.在CWT100G数据集进行的实验表明,该分类器具有较高的分类精度以及较短的训练和分类时间.相同的数据集上的阈值策略选择实验也说明了加权阈值策略能提高分类精度.  相似文献   

14.
针对分类数据集合线性不可分的问题,改进了支持向量机(SVM)的分类方法,构建新的分类决策函数和高斯核函数.在支持向量机关键参数的优化环节,采用粒子群算法对惩罚参数和高斯参数进行优化,设计便于操作的优化流程,并针对Iris数据集合展开实验研究.结果表明:相比于基于遗传算法优化的SVM方法,所提出的方法执行速度快、分类准确率高.  相似文献   

15.
随着人们对隐私权的越来越重视,隐私保护数据挖掘成为当前研究热点.分类算法作为一个重要的数据挖掘方法被应用到各个领域,其中支持向量机(SVM)是分类算法中一个重要方法.并且数据的隐私性和安全性是人们关注的重点.本文对SSP协议进行扩展提出了一个基于垂直分布数据的隐私支持向量机算法,这个算法具有更高的效率和更好的安全性.  相似文献   

16.
提出一种基于SVM(Support Vector Machine)优化的TLD(Track-LearningDetection)行人检测跟踪算法.将行人作为正样本,背景作为负样本,提取出行人的HOG特征并投入线性SVM中进行训练,得到行人检测分类器,并标定出目标区域,实现行人自动识别;然后在TLD算法的基础上对行人进行跟踪和在线学习,估计检测出的正负样本并实时修正检测器在当前帧中的误检,利用相邻帧间特征点配准剔除误配点,同时更新跟踪器数据,以避免后续出现类似错误.实验表明,该算法能够适应遮挡变化且自动识别并稳定跟踪目标行人,较传统跟踪算法具有更强的鲁棒性.  相似文献   

17.
一种快速SVM学习算法   总被引:3,自引:0,他引:3  
介绍了支持向量机用于解决模式分类问题的基本原理和学习算法,在对SMO算法进行深入分析的基础上,提出了一种改进的分解算法GD,较好地解决了训练过程中子问题的求解复杂度和迭代次数及效率之间的矛盾。实验表明,该算法能够大大缩短非线性核支持向量机的训练时间。  相似文献   

18.
收集并整合多所高校学生的慕课学习行为数据,设计基于数据复杂度的纠错输出编码(ECOC)多分类算法.该算法利用数据复杂度降低多类之间的分类难度,从而提高算法的预测准确度.实验结果表明,在不同高校的慕课数据集的测试中,所设计基于数据复杂度的ECOC分类算法比传统的ECOC算法具有更高的分类准确度和鲁棒性,实现了学生学习成绩...  相似文献   

19.
利用车辆传动系统试验数据对车辆进行故障诊断和性能评价可以实现车辆故障预警,提高可靠性,从而提高车辆性能,但测试数据有数据量大、不平衡、维度高、噪声多的特征,使得传统数据分析算法会产生次优的分类模型.针对上述问题,提出了一种改进的不平衡数据分类支持向量机算法.该算法赋予各样本不同的权值,用马氏距离改进模糊隶属度的设计以排除变量相关性干扰,同时可以输出正常状态下的故障概率.实验结果表明,该算法能够有效提高故障诊断的准确性,概率输出模型可用于故障预警和性能分析.   相似文献   

20.
 基于P300事件相关电位的脑机接口(BCI)系统中,有效的P300特征提取及分类是系统开展后续工作的关键。应用时间序列自回归(AR)模型及支持向量机(SVM)算法对脑电信号进行P300分类;对10导联脑电数据分别分段,并对每段建立AR模型;采用最小二乘法进行AR模型系数估计,由估计出的系数序列构成特征向量,送入SVM进行模式分类。实验针对BCI Competition Ⅲ dataset Ⅱ数据集进行了方法验证,提出的方法在15试次情况下识别正确率达93.5%。实验及数据分析结果表明,应用SVM分类器对AR模型提取出的系数序列特征向量进行分类,具有较好的系统识别正确率,可为实现基于P300的BCI系统实际应用奠定理论和实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号