首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J O Hahm  R B Langdon  M Sur 《Nature》1991,351(6327):568-570
Afferent activity has an important role in the formation of connections in the developing mammalian visual system. But the extent to which the activity of target neurons shapes patterns of afferent termination and synaptic contact is not known. In the ferret's visual pathway, retinal ganglion cell axons from each eye segregate early in development into eye-specific laminae in the lateral geniculate nucleus (LGN). The dorsal laminae (termed laminae A and A1) then segregate further into inner and outer sublaminae that retain input from on-centre and off-centre retinal axons, respectively. Thus, individual retinogeniculate axons form terminal arbors within laminae A and A1 that are restricted to one inner or outer sublamina. We report here that blockade of N-methyl-D-aspartate (NMDA) receptors on LGN cells with specific antagonists during the period of sublamina formation prevents retinal afferents from segregating into 'On' and 'Off' sublaminae. Retinogeniculate axons have arbors that are not restricted appropriately, or are restricted in size but inappropriately positioned within the eye-specific laminae. NMDA receptor antagonists may specifically disrupt a mechanism by which LGN neurons detect correlated afferent and target activity, and have been shown to reduce retinogeniculate transmission more generally, causing LGN cells to have markedly reduced levels of activity. These results therefore indicate that the activity of postsynaptic cells can significantly influence the patterning of inputs and the structure of presynaptic afferents during development.  相似文献   

2.
R E Kalil  M W Dubin  G Scott  L A Stark 《Nature》1986,323(6084):156-158
Although the influence of electrical activity on neural development has been studied extensively, experiments have only recently focused on the role of activity in the development of the mammalian central nervous system (CNS). Using tetrodotoxin (TTX) to abolish sodium-mediated action potentials, studies on the visual system show that impulse activity is essential both for the normal development of neuronal size and responsivity in the lateral geniculate nucleus (LGN), and for the eye-specific segregation of geniculo-cortical axons. There have been no anatomical studies to investigate the influence of action potentials on CNS synaptic development. We report here the first direct evidence that elimination of action potentials in the mammalian CNS blocks the growth of developing axon terminals and the formation of normal adult synaptic patterns. Our results show that when TTX is used to eliminate retinal ganglion-cell action potentials in the cat from birth to 8 weeks, the connections made by ganglion cell axons with LGN neurones, retinogeniculate synapses, remain almost identical morphologically to those in the newborn kitten.  相似文献   

3.
Hua JY  Smear MC  Baier H  Smith SJ 《Nature》2005,434(7036):1022-1026
The formation of functional neural networks requires precise regulation of the growth and branching of the terminal arbors of axons, processes known to be influenced by early network electrical activity. Here we show that a rule of activity-based competition between neighbouring axons appears to govern the growth and branching of retinal ganglion cell (RGC) axon arbors in the developing optic tectum of zebrafish. Mosaic expression of an exogenous potassium channel or a dominant-negative SNARE protein was used to suppress electrical or neurosecretory activity in subsets of RGC axons. Imaging in vivo showed that these forms of activity suppression strongly inhibit both net growth and the formation of new branches by individually transfected RGC axon arbors. The inhibition is relieved when the activity of nearby 'competing' RGC axons is also suppressed. These results therefore identify a new form of activity-based competition rule that might be a key regulator of axon growth and branch initiation.  相似文献   

4.
K Fox  N Daw  H Sato  D Czepita 《Nature》1991,350(6316):342-344
Some features of the visual cortex develop postnatally in mammals. For example, geniculocortical axons that initially overlap throughout cortical layer IV segregate postnatally into two sets of interleaved eye-specific bands. NMDA (N-methyl-D-aspartate) receptors are necessary for eye-specific axon-segregation in the frog tectum, and as NMDA receptors play a greater part in synaptic transmission in early life and decrease in function during the period of axon segregation, they may be involved in the segregation of geniculocortical axons: they are well placed to do so as they transduce retinally derived signals essential for segregation. Rearing animals in the dark in early life delays segregation and prolongs the critical period for plasticity. We now report that dark-rearing of kittens also delays the loss of NMDA receptor function in the visual cortex, supporting the view that they play an important part in neuronal development and plasticity.  相似文献   

5.
Experimentally induced alteration in the polarity of developing neurons   总被引:5,自引:0,他引:5  
C G Dotti  G A Banker 《Nature》1987,330(6145):254-256
Despite the great diversity of shapes exhibited by different classes of nerve cells, nearly all neurons share one feature in that they have a single axon and several dendrites. The two types of processes differ in their morphology, in their rate of growth, in the macromolecular composition of their cytoskeletons and surface membranes, and in their synaptic polarity. When hippocampal neurons are dissociated from the embryonic brain and cultured, they reproducibly establish this basic form with a single axon and several dendrites, despite the absence of any spatially organized environmental cues, and without the need for cell to cell contact. We have cut the axons of young hippocampal neurons within a day of their development: in some cases the initial axon regenerated, but more frequently one of the other processes, which if undisturbed would have become a dendrite, instead became the axon. Frequently the stump of the original axon persisted following the transection and subsequently became a dendrite. Evidently the neuronal processes that first develop in culture have the capacity to form either axons or dendrites. The acquisition of axonal characteristics by one neuronal process apparently inhibits the others from becoming axons, so they subsequently become dendrites.  相似文献   

6.
H Sakai  K Naka 《Nature》1985,315(6020):570-571
In many fish retinas, thin axons from the external horizontal cells extend through the inner nuclear layer and expand into large terminal processes that lie along the border of the inner nuclear and inner plexiform layers. Although the horizontal-cell axon terminals are structurally very prominent, their function is unknown. Here we report morphological and functional evidence that signals from catfish (Ictalurus punctatus) horizontal-cell axon terminals can be transmitted directly to amacrine cells. Current injected into horizontal-cell axon terminals produces responses from both transient and sustained amacrine cells very similar to those elicited by light stimuli. Electron microscope observations show chemical synapses from the axon terminals onto amacrine cell perikarya and processes. These data suggest that amacrine cells in the catfish retina receive two inputs, one from bipolar cells and the other from horizontal-cell axon terminals.  相似文献   

7.
Generation of cat retinal ganglion cells in relation to central pathways   总被引:4,自引:0,他引:4  
C Walsh  E H Polley  T L Hickey  R W Guillery 《Nature》1983,302(5909):611-614
The ganglion cells of the cat retina form classes distinguishable in terms of perikaryal size, dendritic morphology and functional properties. Further, the axons differ in their diameters, patterns of chiasmatic crossing and in their central connections. Here we define, by 3H-thymidine autoradiography, the order of production of cells of each class and relate the order of the 'birthdates' to the known axonal pathways. The ganglion cell classes are produced in broad waves, which overlap as cells are produced first for central then for peripheral retina. Medium-sized cells are produced before the largest cells, and small ganglion cells are produced throughout the period of cell generation. This sequence of cell production relates to the orderly arrangement of axons in the optic tract, and can also be related to the rules of chiasmatic crossing observed for each ganglion cell class.  相似文献   

8.
Roska B  Werblin F 《Nature》2001,410(6828):583-587
The mammalian visual system analyses the world through a set of separate spatio-temporal channels. The organization of these channels begins in the retina, where the precise laminations of both the axon terminals of bipolar cells and the dendritic arborizations of ganglion cells suggests the presence of a vertical stack of neural strata at the inner plexiform layer (IPL). Conversely, many inhibitory amacrine cell classes are multiply or diffusely stratified, indicating that they might convey information between strata. On the basis of the diverse stratification and physiological properties of ganglion cells, it was suggested that the IPL contains a parallel set of representations of the visual world embodied in the strata and conveyed to higher centres by the classes of ganglion cells whose dendrites ramify at that stratum. Here we show that each stratum receives unique and substantively different excitatory and inhibitory neural inputs that are integrated to form at least ten different, parallel space-time spiking outputs. The response properties of these strata are ordered in the time domain. Inhibition through GABAC receptors extracts spatial edges in neural representations and seems to separate the functional properties of the strata. We describe a new form of neuronal interaction that we call 'vertical inhibition' that acts not laterally, but between strata.  相似文献   

9.
Kasthuri N  Lichtman JW 《Nature》2003,424(6947):426-430
In developing mammalian muscle, axon branches of several motor neurons co-innervate the same muscle fibre. Competition among them results in the strengthening of one and the withdrawal of the rest. It is not known why one particular axon branch survives or why some competitions resolve sooner than others. Here we show that the fate of axonal branches is strictly related to the identity of the axons with which they compete. When two neurons co-innervate multiple target cells, the losing axon branches in each contest belong to the same neuron and are at nearly the same stage of withdrawal. The axonal arbor of one neuron engages in multiple sets of competitions simultaneously. Each set proceeds at a different rate and heads towards a common outcome based on the identity of the competitor. Competitive vigour at each of these sets of local competitions depends on a globally distributed resource: neurons with larger arborizations are at a competitive disadvantage when confronting neurons with smaller arborizations. An accompanying paper tests the idea that the amount of neurotransmitter released is this global resource.  相似文献   

10.
Assembly of microtubules at the tip of growing axons   总被引:26,自引:0,他引:26  
J R Bamburg  D Bray  K Chapman 《Nature》1986,321(6072):788-790
The growth of axons in the developing nervous system depends on the elongation of the microtubules that form their principal longitudinal structural element. It is not known whether individual microtubules in the axon elongate at their proximal ends, close to the cell body, and then move forward into the lengthening axon, or whether tubulin subunits are transported to the tip of the axon and assembled there onto the free ends of microtubules. The former possibility is supported by studies of slow axonal transport in mature nerves from which it has been deduced that microtubule assembly occurs principally at the neuronal cell body. By contrast, the polarity of microtubules in axons, which have their 'plus' or 'fast-growing' ends distal to the cell body, suggests that assembly occurs at the growing tip, or growth cone, of the axon. We have addressed this question by topically applying Colcemid (N-desacetyl-N-methylcolchicine), and other drugs which alter microtubule stability, to different regions of isolated nerve cells growing in tissue culture. We find that the sensitivity to these drugs is greatest at the growth cone by at least two orders of magnitude, suggesting that this is a major site of microtubule assembly during axonal growth.  相似文献   

11.
Target size regulates calibre and myelination of sympathetic axons   总被引:6,自引:0,他引:6  
J T Voyvodic 《Nature》1989,342(6248):430-433
Axons in vertebrate peripheral nerves are ensheathed by Schwann cells. For some axons, this sheath consists of a single layer of glial cell cytoplasm and plasma membranes; for other axons, Schwann cells form multilayered myelin. Whether or not a Schwann cell makes myelin is determined by a signal from the axon, but the nature of this signal is not known. Here I show that sympathetic postganglionic axons, which are normally not myelinated, become myelinated when their calibre is increased as a result of increasing the size of the peripheral target they innervate. This result implies that axon calibre, which is known to be correlated with myelination, is in fact the crucial determinant of whether an axon becomes myelinated. Furthermore, the finding that increasing or decreasing target size causes corresponding increases or decreases in axon size indicates that axon calibre is itself regulated by retrograde signals from peripheral target tissues.  相似文献   

12.
J R Slack  W G Hopkins  M N Williams 《Nature》1979,282(5738):506-507
When disease or injury causes partial loss of innervation from a muscle, the remaining axons sprout and form new connections to the denervated muscle fibres. Sprouting can occur in two ways: from axon terminals (terminal sprouting) or from the intramuscular axons themselves, probably from the nodes of Ranvier (collateral sprouting). Terminal sprouting has been induced experimentally using various methods, including partial denervation, nerve conduction block and nerve transmission block. A common factor in the induction of terminal sprouting seems to be changes in the surface membrane of muscle fibres; these changes and terminal sprouting are prevented by direct stimulation of the muscle. Collateral sprouting has been induced only by partial denervation and is not prevented by direct stimulation. This has been taken as evidence for an earlier suggestion that products of nerve or axon degeneration may be a direct stimulus for collateral sprouting. We report here that axon degeneration products alone are probably not the stimulus for collateral sprouting.  相似文献   

13.
用常规Nissl染色和成年动物Golgi染色方法分别标记小脑浦肯野细胞(Purkinje cell,PC),比较其染色效果,结果显示,常规Nissl染色只能观察到PC胞体,胞体内的胞核及核仁也清晰可见,但树突和轴突不着色;成年动物Golgi染色能清晰地显示PC树突、轴突及树突棘的形态结构,但胞体结构不清楚。  相似文献   

14.
D Sretavan  C J Shatz 《Nature》1984,308(5962):845-848
When connections are first formed during the development of the vertebrate nervous system, inputs from different sources are frequently intermixed and the specific adult pattern then emerges as the different inputs segregate from each other. During the prenatal development of connections between retina and lateral geniculate nucleus (LGN) in the cat, the projections from the two eyes initially overlap with each other within the LGN. Over the next 3 weeks a reduction in the amount of overlap occurs so that by birth, a segregated pattern similar to the adult is present. We report here that during the period of overlap, individual retinogeniculate axons are simple in shape and restricted in extent without any widespread branches. Further, the appearance of the segregated pattern of eye input is accompanied by the elaboration of extensive new axonal arbors within appropriate LGN territory accompanied by retraction of only a limited number of minor branches. This developmental strategy contrasts with that in other regions of the vertebrate central nervous system in which the orderly adult pattern of connections within a target is achieved by a relative reduction in the overall extent of the axon arbor.  相似文献   

15.
Genetic and epigenetic mechanisms contribute to motor neuron pathfinding   总被引:4,自引:0,他引:4  
Sharma K  Leonard AE  Lettieri K  Pfaff SL 《Nature》2000,406(6795):515-519
Many lines of evidence indicate that genetically distinct subtypes of motor neurons are specified during development, with each type having characteristic properties of axon guidance and cell-body migration. Motor neuron subtypes express unique combinations of LIM-type homeodomain factors that may act as intrinsic genetic regulators of the cytoskeletal events that mediate cell migration, axon navigation or both. Although experimentally displaced motor neurons can pioneer new routes to their targets, in many cases the axons of motor neurons in complete isolation from their normal territories passively follow stereotypical pathways dictated by the environment. To investigate the nonspecific versus genetically controlled regulation of motor connectivity we forced all motor neurons to express ectopically a LIM gene combination appropriate for the subgroup that innervates axial muscles. Here we show that this genetic alteration is sufficient to convert the cell body settling pattern, gene-expression profile and axonal projections of all motor neurons to that of the axial subclass. Nevertheless, elevated occupancy of the axial pathway can override their genetic program, causing some axons to project to alternative targets.  相似文献   

16.
Petrovic M  Hummel T 《Nature》2008,456(7223):800-803
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.  相似文献   

17.
Schmitt AM  Shi J  Wolf AM  Lu CC  King LA  Zou Y 《Nature》2006,439(7072):31-37
Computational modelling has suggested that at least two counteracting forces are required for establishing topographic maps. Ephrin-family proteins are required for both anterior-posterior and medial-lateral topographic mapping, but the opposing forces have not been well characterized. Wnt-family proteins are recently discovered axon guidance cues. We find that Wnt3 is expressed in a medial-lateral decreasing gradient in chick optic tectum and mouse superior colliculus. Retinal ganglion cell (RGC) axons from different dorsal-ventral positions showed graded and biphasic response to Wnt3 in a concentration-dependent manner. Wnt3 repulsion is mediated by Ryk, expressed in a ventral-to-dorsal decreasing gradient, whereas attraction of dorsal axons at lower Wnt3 concentrations is mediated by Frizzled(s). Overexpression of Wnt3 in the lateral tectum repelled the termination zones of dorsal RGC axons in vivo. Expression of a dominant-negative Ryk in dorsal RGC axons caused a medial shift of the termination zones, promoting medially directed interstitial branches and eliminating laterally directed branches. Therefore, a classical morphogen, Wnt3, acting as an axon guidance molecule, plays a role in retinotectal mapping along the medial-lateral axis, counterbalancing the medial-directed EphrinB1-EphB activity.  相似文献   

18.
S S Blair  M A Murray  J Palka 《Nature》1985,315(6018):406-409
Growing axons can be guided by a number of different cues: adhesive substrates, diffusible factors, electrical fields and even factors intrinsic to the neurone itself have all been shown to affect axon orientation and outgrowth in vitro. However, in most intact systems it has proved difficult to test directly the role played by these putative guidance cues. Here, we describe a system, the developing wing of the fruitfly, in which we have tested simultaneously two putative guidance mechanisms, physical constraints to axon growth (channels) and the position of neuronal somata (guideposts), using surgical techniques. We show that pioneer sensory axons can navigate correctly and form their normal stereotyped pattern of axon bundles in wing fragments that apparently lack both physical and neural cues. This technique allows access to the surface along which neuronal pathfinding takes place, making possible a wide range of experimental manipulations on the developing system.  相似文献   

19.
A W Mudge 《Nature》1984,309(5966):367-369
Cell-cell interactions are thought to play a crucial part in determining the developmental fate of vertebrate cells and regulating their subsequent differentiation. In the peripheral nervous system, for example, signals from neuronal axons determine whether or not some Schwann cells wrap their plasma membrane concentricially around the axon to form a myelin sheath. Moreover, there is some evidence that the interactions between Schwann cells and neurones are not all one way: for example, Schwann cells are thought to provide signals for neuronal sprouting and regeneration. However, there are no clear examples in which Schwann cells have been shown to influence the normal development of neurones. Here I have used purified populations of embryonic sensory neurones and Schwann cells to demonstrate that Schwann cells have a dramatic influence on the development of these neurones. In the presence of Schwann cells, but not other cell types, the sensory neurones undergo a morphological transformation from an immature bipolar form to a mature pseudo-unipolar form. This provides a striking example of the importance of glial cells for neuronal development.  相似文献   

20.
B B Stanfield  D D O'Leary 《Nature》1985,313(5998):135-137
In adult rats, cortical neurones that send axons through the pyramidal tract are confined to layer V, over the rostral two-thirds of the cerebral hemisphere. However, during the first postnatal week, many neurones in layer V in the occipital cortex (including the visual cortex) also extend axon collaterals through the pyramidal tract and into the spinal cord. These occipital corticospinal collaterals are completely eliminated over the subsequent 2 weeks, although their cells of origin do not die. We now report that when portions of the occipital cortex from fetal rats are transplanted to more rostral cortical regions of newborn rats, some of the transplanted neurones not only extend axons through the pyramidal tract, but also maintain these axons beyond the stage at which they are normally eliminated. These results suggest that normally-eliminated cortical axons can be 'rescued' and, in the case of pyramidal tract neurones, the position of the neurones within the tangential plane of the cortex is a critical factor in determining which neurones retain and which lose their pyramidal tract collaterals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号