首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Sayah DM  Sokolskaja E  Berthoux L  Luban J 《Nature》2004,430(6999):569-573
In Old World primates, TRIM5-alpha confers a potent block to human immunodeficiency virus type 1 (HIV-1) infection that acts after virus entry into cells. Cyclophilin A (CypA) binding to viral capsid protects HIV-1 from a similar activity in human cells. Among New World primates, only owl monkeys exhibit post-entry restriction of HIV-1 (ref. 1). Paradoxically, the barrier to HIV-1 in owl monkey cells is released by capsid mutants or drugs that disrupt capsid interaction with CypA. Here we show that knockdown of owl monkey CypA by RNA interference (RNAi) correlates with suppression of anti-HIV-1 activity. However, reintroduction of CypA protein to RNAi-treated cells did not restore antiviral activity. A search for additional RNAi targets unearthed TRIMCyp, an RNAi-responsive messenger RNA encoding a TRIM5-CypA fusion protein. TRIMCyp accounts for post-entry restriction of HIV-1 in owl monkeys and blocks HIV-1 infection when transferred to otherwise infectable human or rat cells. It seems that TRIMCyp arose after the divergence of New and Old World primates when a LINE-1 retrotransposon catalysed the insertion of a CypA complementary DNA into the TRIM5 locus. This is the first vertebrate example of a chimaeric gene generated by this mechanism of exon shuffling.  相似文献   

2.
3.
HIV infection of primate lymphocytes and conservation of the CD4 receptor   总被引:2,自引:0,他引:2  
The CD4 T-lymphocyte differentiation antigen is an essential component of the cell surface receptor for human immunodeficiency viruses (HIVs) causing AIDS (acquired immune deficiency syndrome) (refs 1-3). Peripheral blood lymphocytes of apes, New World and Old World monkeys express cell surface antigens homologous to CD4 of human T-helper lymphocytes. The cells of several of these species can be infected in short term culture with diverse strains of the type-1 or type-2 human immunodeficiency viruses (HIV-1 and HIV-2). HIV-1 is the prototype AIDS virus, and HIV-2 is the second type of AIDS virus, prevalent in West Africa. Infection of the primate cells correlates with evolutionary conservation on CD4 of one particular epitope cluster, and is inhibited by treatment of the cells with monoclonal antibodies to this epitope. The capacity of HIV to replicate in simian cells may provide a means for evaluating antiviral drugs and vaccines.  相似文献   

4.
Some wild African green monkeys are known to be naturally infected with a retrovirus related to human immunodeficiency virus (HIV) without having any apparent symptoms of an AIDS-like disease. This simian immunodeficiency virus, designated SIVAGM, may be helpful in clarifying the evolution and pathogenicity of HIV. Some virus strains that were previously reported to be isolated from African green monkeys were shown to be laboratory contaminations of SIVMAC (SIV from a rhesus macaque) Here we report the complete DNA sequence of authentic SIVAGM, which was isolated from a naturally infected African green monkey of Kenyan origin. Comparison of the genome of SIVAGM with those of known HIV/SIVs indicates that the virus is a new simian lentivirus that is approximately equally distantly related to HIV-1 and HIV-2 in contrast to SIVMAC, which is much closer to HIV-2 than to HIV-1 (refs 5, 9).  相似文献   

5.
Preclinical studies of human immunodeficiency virus type 1 (HIV-1) vaccine candidates have typically shown post-infection virological control, but protection against acquisition of infection has previously only been reported against neutralization-sensitive virus challenges. Here we demonstrate vaccine protection against acquisition of fully heterologous, neutralization-resistant simian immunodeficiency virus (SIV) challenges in rhesus monkeys. Adenovirus/poxvirus and adenovirus/adenovirus-vector-based vaccines expressing SIV(SME543) Gag, Pol and Env antigens resulted in an 80% or greater reduction in the per-exposure probability of infection against repetitive, intrarectal SIV(MAC251) challenges in rhesus monkeys. Protection against acquisition of infection showed distinct immunological correlates compared with post-infection virological control and required the inclusion of Env in the vaccine regimen. These data demonstrate the proof-of-concept that optimized HIV-1 vaccine candidates can block acquisition of stringent, heterologous, neutralization-resistant virus challenges in rhesus monkeys.  相似文献   

6.
Infection of macaques with simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) are useful models for studies of immunotherapy and vaccination against HIV as well as for testing of antiviral drugs. Vaccine research showing protective immunity in immunized monkeys has indicated that it will be possible to develop a vaccine for prevention of human HIV infection, although many hurdles remain. The design of an HIV vaccine would be helped if the basis of the protective immunity could be elucidated. Passive immune prophylaxis offers a means to determine the relative role of antibodies in protection against infection. We have studied whether a transfer of antibodies can prevent HIV-2 and SIVsm (SIV of sooty mangabey origin) infection in cynomolgus monkeys. Sera with high antibody titres were collected, heat-treated and injected into naive animals 6 h before challenge with 10-100 monkey-infectious doses of live homologous virus. All control animals treated with normal monkey serum (n = 6) or no serum (n = 39) became infected by the challenge virus, whereas five out of seven animals pretreated with antibody-containing serum at a dose of 9 ml kg-1 resisted infection. Thus passively transferred antibodies can protect against a low-dose lentivirus challenge in a nonhuman primate.  相似文献   

7.
Because of the growing incidence of AIDS (acquired immune deficiency syndrome), the need for studies on animal models is urgent. Infection of chimpanzees with the retroviral agent of human AIDS, the human immunodeficiency virus (HIV), will have only limited usefulness because chimpanzees are in short supply and do not develop the disease. Among non-human primates, both type D retroviruses and lentiviruses can be responsible for immune deficiencies. The D-type retroviruses, although important pathogens in macaque monkey colonies, are not satisfactory as a model because they differ in genetic structure and pathophysiological properties from the human AIDS viruses. The simian lentivirus, previously referred to as simian T-cell lymphotropic virus type III (STLV-III), now termed simian immunodeficiency virus (SIV) is related to HIV by the antigenicity of its proteins and in its main biological properties, such as cytopathic effect and tropism for CD4-bearing cells. Most importantly, SIV induces a disease with remarkable similarity to human AIDS in the common rhesus macaques, which therefore constitute the best animal model currently available. Natural or experimental infection of other monkeys such as African green monkeys or sooty mangabeys has not yet been associated with disease. Molecular approaches of the SIV system will be needed for biological studies and development of vaccines that could be tested in animals. We have cloned and sequenced the complete genome of SIV isolated from a naturally infected macaque that died of AIDS. This SIVMAC appears genetically close to the agent of AIDS in West Africa, HIV-2, but the divergence of the sequences of SIV and HIV-2 is greater than that previously observed between HIV-1 isolates.  相似文献   

8.
Identification of a protein encoded by the vpu gene of HIV-1   总被引:31,自引:0,他引:31  
Human immunodeficiency virus 1 (HIV-1) is the aetiological agent of AIDS. The virus establishes lytic, latent and non-cytopathic productive infection in cells in culture. The complexity of virus-host cell interaction is reflected in the complex organization of the viral genome. In addition to the genes that encode the virion capsid and envelope proteins and the enzymes required for proviral synthesis and integration common to all retroviruses, HIV-1 is known to encode at least four additional proteins that regulate virus replication, the tat, art, sor and 3' orf proteins, as well as a protein of unknown function from the open reading frame called R. Close examination of the nucleic acid sequences of the genomes of multiple HIV isolates raised the possibility that the virus encodes a previously undetected additional protein. Here we report that HIV-1 encodes a ninth protein and that antibodies to this protein are detected in the sera of people infected with HIV-1. This protein distinguishes HIV-1 isolates from the other human and simian immunodeficiency viruses (HIV-2 and SIV) that do not have the capacity to encode a similar protein.  相似文献   

9.
The CD4 molecule is a high-affinity cell-surface receptor for the human immunodeficiency virus (HIV-1) and a soluble truncated form of CD4 produced by recombinant DNA technology is a potent inhibitor of HIV-1 replication and HIV-1-induced cell fusion in vitro. Rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIVMAC), a virus closely related to HIV-1, develop an AIDS-like syndrome, and so provide an important model for the evaluation of potential AIDS therapies. We have assessed the therapeutic effect of recombinant soluble CD4 in SIVMAC-infected rhesus monkeys. Virus was readily isolated from peripheral blood lymphocytes and bone marrow cells of these animals before starting treatment with soluble CD4, but became difficult to isolate soon after treatment had begun. Moreover the diminished growth of both granulocyte-macrophage and erythrocyte progenitor colonies from the bone marrow of these monkeys rose to normal levels during treatment. These findings indicate that soluble CD4 could prove valuable in the treatment of AIDS.  相似文献   

10.
Since the isolation of an HIV-2-related virus from captive macaques (SIVMAC), the origin of human immunodeficiency viruses, a much debated subject, has been attributed to monkeys. The sequence of SIVAGM, which is derived from a naturally infected African green monkey, shows equal relatedness to HIV-1 and HIV-2, suggesting that the derivation of these viruses from SIVAGM is unlikely. Recent sequence analysis of SIV from a captive sooty mangabey (SIVMAC), however, shows its close relatedness to HIV-2 and SIVMAC, indicating a possible origin of HIV-2 and SIVMAC from SIVSM (refs 4, 7, 9). We report here the sequence of a novel simian lentivirus, SIVMND, isolated from a wild-caught mandrill in Africa. It is distinct from the three other main groups, HIV-1, HIV-2/SIVMAC/SIVSM and SIVAGM, and therefore represents a fourth main group of primate lentiviruses. Phylogenetic analysis indicates that these four main virus groups might have diverged from a common ancestor at about the same time, long before the spread of AIDS in humans.  相似文献   

11.
Designing CD4 immunoadhesins for AIDS therapy   总被引:66,自引:0,他引:66  
A newly-constructed antibody-like molecule containing the gp120-binding domain of the receptor for human immunodeficiency virus blocks HIV-1 infection of T cells and monocytes. Its long plasma half-life, other antibody-like properties, and potential to block all HIV isolates, make it a good candidate for therapeutic use.  相似文献   

12.
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.  相似文献   

13.
M J Buchmeier  H A Lewicki  O Tomori  K M Johnson 《Nature》1980,288(5790):486-487
Certain arenaviruses have become widely recognized as important human pathogens, the most notable among these being Lassa virus, the causative agent of Lassa fever. Two other members of the group, Junin and Machupo virus, are the aetiological agents of Argentine and Bolivian haemorrhagic fevers, respectively. All these agents share both morphological features and to varying degrees serological cross-reactivity with other non-pathogenic arenaviruses. Despite the evident clinical importance of these viruses, work to define their physiochemical structure and to develop rapid and precise diagnostic techniques has been slow. Consequently, the definitive relationships among West African Lassa strains, strains of a related agent from Mozambique and of an Old World arenavirus, lymphocytic choriomeningitis (LCM), have not been established. This problem is of more than simple taxonomic importance in view of the fact that a Mozambique virus strain produced subclinical infection in experimental monkeys which were then resistant to challenge with monkey and human virulent Lassa virus from Sierra Leone. We have explored the use of monoclonal hybridoma antibodies generated against relatively less hazardous arenaviruses to define antigens cross-reactive with the important human pathogens of the group. Here we describe the use of monoclonal antibodies directed against LCM, virus to define antigenic specificities shared among LCM, Lassa and Mozambique viruses.  相似文献   

14.
At least five arenaviruses cause viral haemorrhagic fevers in humans. Lassa virus, an Old World arenavirus, uses the cellular receptor alpha-dystroglycan to infect cells. Machupo, Guanarito, Junin and Sabia viruses are New World haemorrhagic fever viruses that do not use alpha-dystroglycan. Here we show a specific, high-affinity association between transferrin receptor 1 (TfR1) and the entry glycoprotein (GP) of Machupo virus. Expression of human TfR1, but not human transferrin receptor 2, in hamster cell lines markedly enhanced the infection of viruses pseudotyped with the GP of Machupo, Guanarito and Junin viruses, but not with those of Lassa or lymphocytic choriomeningitis viruses. An anti-TfR1 antibody efficiently inhibited the replication of Machupo, Guanarito, Junin and Sabia viruses, but not that of Lassa virus. Iron depletion of culture medium enhanced, and iron supplementation decreased, the efficiency of infection by Junin and Machupo but not Lassa pseudoviruses. These data indicate that TfR1 is a cellular receptor for New World haemorrhagic fever arenaviruses.  相似文献   

15.
R E Benveniste  G J Todaro 《Nature》1976,261(5556):101-108
Old World monkeys and apes, including man, possess, as a normal component of their cellular DNA, gene sequences (virogenes) related to the RNA of a virus isolated from baboons. A comparison of the viral gene sequences and the other cellular sequences distinguishes those Old World monkeys and apes that have evolved in Africa from those that have evolved in Asia. Among the apes, only gorilla and chimpanzee seem by these criteria to be African, whereas gibbon, orang-utan and man are identified as Asian, leading us to conclude that most of man's evolution has occurred outside Africa.  相似文献   

16.
Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin   总被引:11,自引:0,他引:11  
The first step in infection by the human immunodeficiency virus (HIV) is the specific binding of gp120, the envelope glycoprotein of HIV, to its cellular receptor, CD4. To inhibit this interaction, soluble CD4 analogues that compete for gp120 binding and block HIV infection in vitro have been developed. To determine whether these analogues can protect an uninfected individual from challenge with HIV, we used the chimpanzee model system of cell-free HIV infection. Chimpanzees are readily infected with the IIIB strain of HIV-1, becoming viraemic within about 4-6 weeks of challenge, although they do not develop the profound CD4+ T-cell depletion and immunodeficiency characteristic of HIV infection in humans. CD4 immunoadhesin (CD4-IgG), a chimaeric molecule consisting of the N-terminal two immunoglobulin-like regions of CD4 joined to the Fc region of human IgG1, was selected as the CD4 analogue for testing because it has a longer half-life than CD4, contributed by the IgG Fc portion of the molecule. In humans, this difference results in a 25-fold increased concentration of CD4-IgG in the blood compared with recombinant CD4. Here we report that pretreatment with CD4-IgG can prevent the infection of chimpanzees with HIV-1. The need for a preventative agent is particularly acute in perinatal HIV transmission. As recombinant CD4-IgG, like the parent IgG molecule, efficiently crosses the primate placenta, it may be possible to set up an immune state in a fetus before HIV transfer occurs, thus preventing infection.  相似文献   

17.
The acquired immunodeficiency syndrome (AIDS) is the late-stage clinical manifestation of long-term persistent infection with the human immunodeficiency virus type 1 (HIV-1). Immune responses directed against the virus and against virus-infected cells during the persistent infection fail to mediate resolution of the infection. As a result, a successful AIDS vaccine must elicit an immune state that will prevent the establishment of the persistent infection following introduction of the virus into the host. The third hypervariable (V3) domain of the HIV-1 gp120 envelope glycoprotein is a disulphide-linked closed loop of about 30 amino acids which binds and elicits anti-HIV-1 type-specific virus-neutralizing antibodies. The in vitro characteristics of anti-V3 domain antibody suggest that this antibody could by itself prevent HIV-1 infection in vivo, an idea supported by chimpanzee challenge studies in which protection against the HIV-1 persistent infection seemed to correlate with the presence of anti-V3 domain antibody. Here we directly demonstrate the protective efficacy of anti-V3 domain antibody in vivo and propose that this antibody is potentially useful as both a pre- and post-exposure prophylactic agent.  相似文献   

18.
Although much is now known of the strain variation among the type-1 human immunodeficiency virus (HIV-1), which is the cause of AIDS (acquired immune deficiency syndrome) in the United States, Europe, and Central Africa, much less is yet known about a second group of viruses that have been found in West Africans. One member of this group, named human T-cell lymphotropic virus type 4 (HTLV-4), has been isolated from healthy Senegalese. Another is the virus isolated from West Africans with AIDS-like illness and originally called LAV-2 but now renamed HIV-2. Both these viruses seem to be less closely related to HIV-1 than they are to a virus of healthy African green monkeys, known variously as simian T-cell lymphotropic virus type 3 (STLV-3) or simian immunodeficiency virus (SIV), which in turn is related to viruses isolated from healthy sooty mangabeys and captive macaques with a form of immunodeficiency (to distinguish these viruses they are referred to as STLV-3 (or SIV)agm, STLV-3mac, or STLV-3smm). To clarify the relationship between the various HIVs, STLV-3s and HTLV-4 we are determining and comparing the molecular and biological characteristics of several of them. Following our recent publication of a restriction-site map of STLV-3agm, we now report that the equivalent map of three isolates of HTLV-4 is remarkably similar to it. In addition we present comparative sequence data on the long terminal repeats (LTR) of HTLV-4, STLV-3agm, HIV-1 and HIV-2, together with evidence that cloned HTLV-4 uses the same receptor as HIV-1 and induces some, but not all, of the cytopathic effects attributed to most isolates of HIV-1 and HIV-2.  相似文献   

19.
B H Hahn  L I Kong  S W Lee  P Kumar  M E Taylor  S K Arya  G M Shaw 《Nature》1987,330(6144):184-186
Human immunodeficiency virus type 1 (HIV-1) is the aetiologic agent of AIDS (acquired immune deficiency syndrome) in most countries and probably originated in Central Africa like the AIDS epidemic itself. Evidence for a second major group of human immunodeficiency-associated retroviruses came from a report that West African human populations like wild-caught African green monkeys had serum antibodies that reacted more strongly with a simian immunodeficiency virus (STLV-3Mac) (ref.6) than with HIV-1. Novel T-lymphotropic retroviruses were reported to have been isolated from healthy Senegalese West Africans (HTLV-4) (ref. 4) and from African green monkeys (STLV-3AGM) (ref. 7), and a different retrovirus (HIV-2) was identified in other West African AIDS patients. Genomic analysis of HIV-2 clearly distinguished it from STLV-3 (ref. 9), but restriction enzyme site-mapping of three different HTLV-4 isolates and six different STLV-3AGM isolates showed them to be essentially indistinguishable. In this report we clone, restriction map, and partially sequence three isolates of HTLV-4 (PK82, PK289, PK190) (ref. 4). We find that these viruses differ in nucleotide sequence from each other and from three isolates of STLV-3AGM (K78, K6W, K1) (ref. 7) by 1% or less. We also report the isolation of a T-lymphotropic retrovirus from the peripheral blood of a healthy Senegalese woman which hybridizes preferentially to HIV-2 specific DNA probes. We conclude that HTLV-4 (ref. 4) and STLV-3AGM (ref. 7) are not independent virus isolates and that HIV-2 is present in Senegal as it is in other West African countries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号