首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS?J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS?J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS?J1120+0641 is 1.9?megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS?J1120+0641 exceeded 0.1.  相似文献   

2.
Wyithe JS  Loeb A 《Nature》2004,432(7014):194-196
The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization.  相似文献   

3.
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sightlines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the cosmic microwave background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionized through a complex process that was completed about a billion years after the Big Bang, by redshift z?≈?6. Detecting ionizing Lyman-α photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionization. Here we report the detection of Lyα photons emitted less than 600?million years after the Big Bang. UDFy-38135539 (ref. 5) is at a redshift of z = 8.5549?±?0.0002, which is greater than those of the previously known most distant objects, at z = 8.2 (refs 6 and 7) and z = 6.96 (ref. 8). We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.  相似文献   

4.
Wyithe JS  Loeb A 《Nature》2006,441(7091):322-324
A large number of faint galaxies, born less than a billion years after the Big Bang, have recently been discovered. Fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of megaparsecs, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star-formation rate. Here we report evidence for this suppression. We show that the post-reionization galaxies that produced most of the ionizing radiation at a redshift z approximately 5.5 must have had a mass in excess of approximately 10(10.9 +/- 0.5) solar masses (M(o)) or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (approximately 10(8) M(o)). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, before the epoch of dwarf galaxy suppression.  相似文献   

5.
Wyithe JS  Loeb A 《Nature》2002,417(6892):923-925
Exceptionally bright quasars with redshifts up to z = 6.28 have recently been discovered. Quasars are thought to be powered by the accretion of gas onto supermassive black holes at the centres of galaxies. Their maximum (Eddington) luminosity depends on the mass of the black hole, and the brighter quasars are inferred to have black holes with masses of more than a few billion solar masses. The existence of such massive black holes poses a challenge to models for the formation of structures in the early Universe, as it requires their formation within one billion years of the Big Bang. Here we show that up to one-third of known quasars with z approximately equal to 6 will have had their observed flux magnified by a factor of ten or more, as a consequence of gravitational lensing by galaxies along the line of sight. The inferred abundance of quasar host galaxies, as well as the luminosity density provided by the quasars, has therefore been substantially overestimated.  相似文献   

6.
Loeb A  Waxman E 《Nature》2000,405(6783):156-158
The Universe is filled with a diffuse background of gamma-ray radiation, the origin of which remains one of the unsolved puzzles of cosmology. Less than one-quarter of the gamma-ray flux can be attributed to unresolved discrete sources, such as active galactic nuclei; the remainder appears to constitute a truly diffuse background. Here we show that the shock waves induced by gravity in the gas of the intergalactic medium, during the formation of large-scale structures like filaments and sheets of galaxies, produce a population of highly relativistic electrons. These electrons scatter a small fraction of the cosmic microwave background photons in the local Universe up to gamma-ray energies, thereby providing the gamma-ray background. The predicted diffuse flux agrees with the observed background across more than four orders of magnitude in photon energy, and the model predicts that the gamma-ray background, though generated locally, is isotropic to better than five per cent on angular scales larger than a degree. Moreover, the agreement between the predicted and observed background fluxes implies a mean cosmological density of baryons that is consistent with Big Bang nucleosynthesis.  相似文献   

7.
When galaxy formation started in the history of the Universe remains unclear. Studies of the cosmic microwave background indicate that the Universe, after initial cooling (following the Big Bang), was reheated and reionized by hot stars in newborn galaxies at a redshift in the range 6 < z < 14 (ref. 1). Though several candidate galaxies at redshift z > 7 have been identified photometrically, galaxies with spectroscopically confirmed redshifts have been confined to z < 6.6 (refs 4-8). Here we report a spectroscopic redshift of z = 6.96 (corresponding to just 750 Myr after the Big Bang) for a galaxy whose spectrum clearly shows Lyman-alpha emission at 9,682 A, indicating active star formation at a rate of approximately 10M(o) yr(-1), where M(o) is the mass of the Sun. This demonstrates that galaxy formation was under way when the Universe was only approximately 6 per cent of its present age. The number density of galaxies at z approximately 7 seems to be only 18-36 per cent of the density at z = 6.6.  相似文献   

8.
Bouwens RJ  Illingworth GD 《Nature》2006,443(7108):189-192
The first 900 million years (Myr) to redshift z approximately 6 (the first seven per cent of the age of the Universe) remains largely unexplored for the formation of galaxies. Large samples of galaxies have been found at z approximately 6 (refs 1-4) but detections at earlier times are uncertain and unreliable. It is not at all clear how galaxies built up from the first stars when the Universe was about 300 Myr old (z approximately 12-15) to z approximately 6, just 600 Myr later. Here we report the results of a search for galaxies at z approximately 7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and optical images ever taken. Under conservative selection criteria we find only one candidate galaxy at z approximately 7-8, where ten would be expected if there were no evolution in the galaxy population between z approximately 7-8 and z approximately 6. Using less conservative criteria, there are four candidates, where 17 would be expected with no evolution. This demonstrates that very luminous galaxies are quite rare 700 Myr after the Big Bang. The simplest explanation is that the Universe is just too young to have built up many luminous galaxies at z approximately 7-8 by the hierarchical merging of small galaxies.  相似文献   

9.
Barkana R  Loeb A 《Nature》2003,421(6921):341-343
Recent observations have shown that, only a billion years after the Big Bang, the Universe was already lit up by bright quasars fuelled by the infall of gas onto supermassive black holes. The masses of these early black holes are inferred from their luminosities to be >10(9) solar masses (M(O)), which is a difficult theoretical challenge to explain. Like nearby quasars, the early objects could have formed in the central cores of massive host galaxies. The formation of these hosts could be explained if, like local large galaxies, they were assembled gravitationally inside massive (> 10(12) M(O)) haloes of dark matter. There has hitherto been no observational evidence for the presence of these massive hosts or their surrounding haloes. Here we show that the cosmic gas surrounding each halo must respond to its strong gravitational pull, where absorption by the infalling hydrogen produces a distinct spectral signature. That signature can be seen in recent data.  相似文献   

10.
Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.  相似文献   

11.
The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.  相似文献   

12.
大爆炸宇宙理论是一个非常成功的宇宙理论,它在经过古斯等人提出的暴涨理论修正后日趋完善。但即使这样也还存在几个难题无法解决:(1)欧洲普朗克望远镜揭示的宇宙背景辐射的不对称性;(2)宇宙中所有物质来源于大爆炸没有实验依据;(3)存在暴涨中宇宙膨胀的超光速问题。为了解释上述难题,本文提出了一种建立在大爆炸宇宙理论基础上的多宇宙模型:总星系局爆宇宙模型。该模型可以很好地解决上述难题,文中提出了检验理论模型新的实验方法,通过实验可以最终确认真实的宇宙到底更符合哪个模型。、  相似文献   

13.
Weidinger M  Møller P  Fynbo JP 《Nature》2004,430(7003):999-1001
Quasars are the visible signatures of gas falling into the deep potential well of super-massive black holes in the centres of distant galaxies. It has been suggested that quasars are formed when two massive galaxies collide and merge, leading to the prediction that quasars should be found in the centres of regions of largest overdensity in the early Universe. In dark matter (DM)-dominated models of the early Universe, massive DM halos are predicted to attract the surrounding gas, which falls towards their centres. The neutral gas is not detectable in emission by itself, but gas falling into the ionizing cone of such a quasar will glow in the Lyman-alpha line of hydrogen, effectively imaging the DM halo. Here we present a Lyalpha image of a DM halo at redshift z = 3, along with a two-dimensional spectrum of the gaseous halo. Our observations are best understood in the context of the standard model for DM haloes; we infer a mass of (2 - 7) x 10(12) solar masses (M(\circ)) for the halo.  相似文献   

14.
Bromm V  Loeb A 《Nature》2003,425(6960):812-814
The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation, accompanied by cooling of the primordial gas via molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass it undergoes a slow, quasi-hydrostatic contraction without further fragmentation; lower-mass stars cannot form. Here we show that as soon as the primordial gas--left over from the Big Bang--is enriched by elements ejected from supernovae to a carbon or oxygen abundance as small as approximately 0.01-0.1 per cent of that found in the Sun, cooling by singly ionized carbon or neutral oxygen can lead to the formation of low-mass stars by allowing cloud fragmentation to smaller clumps. This mechanism naturally accommodates the recent discovery of solar-mass stars with unusually low iron abundances (10(-5.3) solar) but with relatively high (10(-1.3) solar) carbon abundance. The critical abundances that we derive can be used to identify those metal-poor stars in our Galaxy with elemental patterns imprinted by the first supernovae. We also find that the minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background.  相似文献   

15.
The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC 6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.  相似文献   

16.
Long gamma-ray bursts (GRBs) are bright flashes of high-energy photons that can last for tens of minutes; they are generally associated with galaxies that have a high rate of star formation and probably arise from the collapsing cores of massive stars, which produce highly relativistic jets (collapsar model). Here we describe gamma- and X-ray observations of the most distant GRB ever observed (GRB 050904): its redshift (z) of 6.29 means that this explosion happened 12.8 billion years ago, corresponding to a time when the Universe was just 890 million years old, close to the reionization era. This means that not only did stars form in this short period of time after the Big Bang, but also that enough time had elapsed for them to evolve and collapse into black holes.  相似文献   

17.
对同一问题的研究,不同思维方式可以得出截然不同的结果,对宇宙的研究更是如此.用实证思维方式研究宇宙,人类已经形成了一个宇宙大爆炸理论;但如果改用整体思维方式看宇宙,则会发现宇宙大爆炸理论存在各种各样的矛盾.最基本的矛盾是实证思维方式和宇宙研究对象之间的不匹配.不匹配的原因是:第一,实证思维方式的物质基础是实物质,它没有根基;第二,实证思维方式重实轻虚,不知道宇宙还是个实和虚的对立统一体.总之,实证思维方式的缺陷已经导致整体思维方式的雄起.  相似文献   

18.
Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.  相似文献   

19.
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.  相似文献   

20.
The nuclear history of the Universe started shortly after the Big Bang.Through nuclear reactions,the ashes from the primordial explosion were transformed to hyd...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号