首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Zinc plays an important role in the structure and function of many enzymes, including alcohol dehydrogenases (ADHs) of the MDR type (mediumchain dehydrogenases/reductases). Active site zinc participates in catalytic events, and structural site zinc maintains structural stability. MDR-types of ADHs have both of these zinc sites but with some variation in ligands and spacing. The catalytic zinc sites involve three residues with different spacings from two separate protein segments, while the structural zinc sites involve four residues and cover a local segment of the protein chain (Cys97-Cys111 in horse liver class I ADH). This review summarizes properties of both ADH zinc sites, and relates them to zinc sites of proteins in general. In addition, it highlights a separate study of zinc binding peptide variants of the horse liver ADH structural zinc site. The results show that zinc coordination of the free peptide differs markedly from that of the enzyme (one His / three Cys versus four Cys), suggesting that the protein zinc site is in an energetically strained conformation relative to that of the peptide. This finding is a characteristic of an entatic state, implying a functional nature for this zinc site.  相似文献   

3.
Cystine knot toxins (CKTs) in spider venoms represent a rich source of novel ligands for varied ion channels. Here, we identified 95 novel putative CKT precursors by analyzing expressed sequence tags of the tarantula Chilobrachys jingzhao venom gland. Phylogenetics analyses revealed one orphan family and six families with sequence similarity to known toxins. To further investigate the relationships of their structures, functions and evolution, we assayed 10 representative toxins for their effect on ion channels, and performed structure model comparisons, evolution analysis and toxin distribution analysis. This study revealed two major types of CKTs: pore-blocking toxins and gating modifier toxins. A few blockers were observed with relatively high abundance and wide distribution, which may be a category of original toxins that block channels conserved in various preys with relatively high specificity. The gating modifier families contain advanced toxins, usually have many members and interact with diverse regulatory components of channels.  相似文献   

4.
The type I copper center in multicopper oxidases is constructed from 1Cys2His and weakly coordinating 1Met or the non-coordinating 1Phe/1Leu, and it exhibits spectral properties and an alkaline transition similar to those of the blue copper center in blue copper proteins. Since the type I copper center in multicopper oxidases is deeply buried inside the protein molecule, electron transfers to and from type I copper are performed through specific pathways: the hydrogen bond between an amino acid located at the substrate binding site and a His residue coordinating type I copper, and the His-Cys-His sequence connecting the type I copper center and the trinuclear copper center comprised of a type II copper and a pair of type III coppers. The intramolecular electron transfer rates can be tuned by mutating the fourth ligand of type I copper. Further, mutation at the Cys ligand gives a vacant type I copper center and traps the reaction intermediate during the four-electron reduction of dioxygen.  相似文献   

5.
Golgi-endomannosidase provides an alternate glucosidase-independent pathway of glucose trimming. Activity for endomannosidase is detectable in various tissues and cell lines but not in CHO cells. Cloning of CHO cell endomannosidase revealed that the highly conserved Trp188 and Arg177 of vertebrate endomannosidase were both substituted by Cys. The Trp188Cys substitution was functionally important since it alone resulted in endoplasmic reticulum (ER) mislocalization of endomannosidase and caused the greatly reduced in vivo activity. These effects could be reversed in cells with a back-engineered Cys188Trp CHO cell endomannosidase, in particular N-glycans of α1-antitrypsin became fully processed. The intramolecular disulfide bridge of CHO cell endomannosidase formed with the additional Cys188 was not solely responsible for the reduced enzyme activity since endomannosidase with engineered Cys188Ala or Ser substitutions did not restore enzyme activity and was ER mislocalized. Thus, the conserved Trp188 residue in endomannosidases is of critical importance for correct subcellular localization and in vivo activity of the enzyme. Received 7 May 2007; received after revision 31 May 2007; accepted 11 June 2007  相似文献   

6.
Neuronal action potentials are generated through voltage-gated sodium channels, which are tethered by ankyrinG at the membrane of the axon initial segment (AIS). Despite the importance of the AIS in the control of neuronal excitability, the cellular and molecular mechanisms regulating sodium channel expression at the AIS remain elusive. Our results show that GSK3α/β and β-catenin phosphorylated by GSK3 (S33/37/T41) are localized at the AIS and are new components of this essential neuronal domain. Pharmacological inhibition of GSK3 or β-catenin knockdown with shRNAs decreased the levels of phosphorylated-β-catenin, ankyrinG, and voltage-gated sodium channels at the AIS, both “in vitro” and “in vivo”, therefore diminishing neuronal excitability as evaluated via sodium current amplitude and action potential number. Thus, our results suggest a mechanism for the modulation of neuronal excitability through the control of sodium channel density by GSK3 and β-catenin at the AIS.  相似文献   

7.
Advances in mass spectrometry and peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous novel peptide toxins from animal venoms in recent years. These advances have also opened up the field of spider venom research, previously unexplored due to methodological limitations. Many peptide toxins from spider venoms share structural features, amino acid composition and consensus sequences that allow them to interact with related classes of cellular receptors. They have become increasingly useful agents for the study of voltage-sensitive and ligand-gated ion channels and the discrimination of their cellular subtypes. Spider peptide toxins have also been recognized as useful agents for their antimicrobial properties and the study of pore formation in cell membranes. Spider peptide toxins with nanomolar affinities for their receptors are thus promising pharmacological tools for understanding the physiological role of ion channels and as leads for the development of novel therapeutic agents and strategies for ion channel-related diseases. Their high insecticidal potency can also make them useful probes for the discovery of novel insecticide targets in the insect nervous system or for the development of genetically engineered microbial pesticides.Received 19 March 2003; received after revision 9 May 2003; accepted 16 May 2003  相似文献   

8.
Voltage-gated sodium channels mediate inward current of action potentials upon membrane depolarization of excitable cells. The initial transient sodium current is restricted to milliseconds through three distinct channel-inactivating and blocking mechanisms. All pore-forming alpha subunits of sodium channels possess structural elements mediating fast inactivation upon depolarization and recovery within milliseconds upon membrane repolarization. Accessory subunits modulate fast inactivation dynamics, but these proteins can also limit current by contributing distinct inactivation and blocking particles. A-type isoforms of fibroblast growth factor homologous factors (FHFs) bear a particle that induces long-term channel inactivation, while sodium channel subunit Navβ4 employs a blocking particle that rapidly dissociates upon membrane repolarization to generate resurgent current. Despite their different physiological functions, the FHF and Navβ4 particles have similarity in amino acid composition and mechanisms for docking within sodium channels. The three competing channel-inactivating and blocking processes functionally interact to regulate a neuron’s intrinsic excitability.  相似文献   

9.
Transthyretin (TTR) is an extracellular protein able to deposit into well-defined protein aggregates called amyloid, in pathological conditions known as senile systemic amyloidosis, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and leptomeningeal amyloidosis. At least three distinct partially folded states have been described for TTR, including the widely studied amyloidogenic state at mildly acidic pH. Here, we have used fluorescence resonance energy transfer (FRET) experiments in a monomeric variant of TTR (M-TTR) and in its W41F and W79F mutants, taking advantage of the presence of a unique, solvent-exposed, cysteine residue at position 10, that we have labelled with a coumarin derivative (DACM, acceptor), and of the two natural tryptophan residues at positions 41 and 79 (donors). Trp41 is located in an ideal position as it is one of the residues of β-strand C, whose degree of unfolding is debated. We found that the amyloidogenic state at low pH has the same FRET efficiency as the folded state at neutral pH in both M-TTR and W79F-M-TTR, indicating an unmodified Cys10–Trp41 distance. The partially folded state populated at low denaturant concentrations also has a similar FRET efficiency, but other spectroscopic probes indicate that it is distinct from the amyloidogenic state at acidic pH. By contrast, the off-pathway state accumulating transiently during refolding has a higher FRET efficiency, indicating non-native interactions that reduce the Cys10–Trp41 spatial distance, revealing a third distinct conformational state. Overall, our results clarify a negligible degree of unfolding of β-strand C in the formation of the amyloidogenic state and establish the concept that TTR is a highly plastic protein able to populate at least three distinct conformational states.  相似文献   

10.
Tetrodotoxin resistant sodium channels have been shown to operate in frog muscle membrane, which are responsible for local action potentials. These channels are located mainly in synaptic regions, and their distribution on the membrane is controlled by neurotrophic factors.  相似文献   

11.
Summary Tetrodotoxin resistant sodium channels have been shown to operate in frog muscle membrane, which are responsible for local action potentials. These channels are located mainly in synaptic regions, and their distribution on the membrane is controlled by neurotrophic factors.  相似文献   

12.
Each kringle of human plasminogen (HPg) except kringle 3 (K3) exhibits affinity for omega-aminocarboxylic acids. Assuming that the K3 domain contains a preformed but nonfunctional lysine binding site (LBS), Lys311 was altered by site-directed mutagenesis into Asp311 in accordance with the consensus sequence of the LBS. Cys297 involved in the interkringle disulfide bridge was mutated into Ser297 to minimize dimerization and aggregation. The mutated K3 TYQ[K3HPg/C297S/K311D]DS (r-K3mut) was expressed in Escherichia coli, isolated on an Ni2(+)-nitrilotriacetic acid-agarose column, refolded and purified on a lysine Bio-Gel column. Fluorescence titration indicates affinity of r-K3mut for omega-aminocarboxylic acids with the following association constants (Kass, mM-1): 5-aminopentanoic acid: 1.3; 6-aminohexanoic acid: 4.2; 7-aminoheptanoic acid: 0.5; trans-(aminomethyl)cyclohexanecarboxylic acid: 12.7; p-benzylaminesulfonic acid: 11.8. r-K3mut exhibits an affinity similar to native and mutated (R220G, E221D) K2. The results indicate the presence of a preformed but nonfunctional LBS in native K3 of HPg. We were able to demonstrate for the first time that an appropriate mutation in the LBS of a kringle produced a weak but distinct affinity for omega-aminocarboxylic acids.  相似文献   

13.
The mechanism of glutamine-dependent amidotransferases   总被引:2,自引:0,他引:2  
Glutamine-dependent amidotransferases have been known for more than 30 years. The mechanism by which these enzymes generate ammonia from the glutamine amide nitrogen and transfer it to seven different chemical classes of acceptors has been the subject of intense scrutiny for the last 5 years. The increasing number of biochemical and structural studies dealing with amidotransferases and with mechanistically related enzymes has disclosed the dichotomy of the mechanisms within these enzymes for achieving the glutamine amide bond cleavage. Some of them use a catalytic Cys/His/Glu triad similar to serine protease, whereas the aminoterminal cysteine of the others is believed to play the same function. The transfer of ammonia from the glutamine site to the acceptor site which must operate in a concerted manner has been demonstrated in two cases to involve channelling but is still matter of investigation.  相似文献   

14.
l-Xylulose reductase (XR) is involved in water re-absorption and cellular osmoregulation. The crystal structure of human XR complemented with site-directed mutagenesis (Cys138Ala) indicated that the disulfide bond in the active site between Cys138 and Cys150 is unstable and may affect the reactivity of the enzyme. The effects of reducing agents on the activities of the wild-type and mutant enzymes indicated the reversibility of disulfide-bond formation, which resulted in three-fold decrease in catalytic efficiency. Furthermore, the addition of cysteine (>2 mM) inactivated human XR and was accompanied by a 10-fold decrease in catalytic efficiency. TOF-MS analysis of the inactivated enzyme showed the S-cysteinylation of Cys138 in the wild-type and Cys150 in the mutant enzymes. Thus, the action of human XR may be regulated by cellular redox conditions through reversible disulfide-bond formation and by S-cysteinylation. Received 25 January 2009; received after revision 12 February 2009; accepted 16 February 2009 H.-T. Zhao, S. Endo: These two authors contribute equally to this work.  相似文献   

15.
A W Cuthbert 《Experientia》1976,32(10):1321-1323
The inhibitory effects of the pyrazine derivative, amiloride, on sodium transport in an amphibian epithelium has been studied as a function of pH. It is concluded that the charged (guanidinium) group interacts with a negatively charged acid grouping in the membrane. Similarities between sodium channels in excitable membranes and epithelia are highlighted.  相似文献   

16.
Summary The inhibitory effects of the pyrazine derivative, amiloride, on sodium transport in an amphibian epithelium has been studied as a function of pH. It is concluded that the charged (guanidinium) group interacts with a negatively charged acid grouping in the membrane. Similarities between sodium channels in excitable membranes and epithelia are highlighted.  相似文献   

17.
Summary The lithium chloride and the substances, which are capable of producing a similar effect on the embryo development, increase the viscosity of proteins from the Amphibian embryo. The sodium thiocyanate, the sodium iodide and the pyocyanine lower it. The proteins fractions which can appear in elongated particles are those which feel the action of the thiocyanate and of the pyocyanine.  相似文献   

18.
Pharmacological concepts tailored to status epilepticus, to epileptogenesis following acquired brain insults, and to ictogenesis in established epilepsy vary considerably and should ideally be directed at those pathophysiological mechanisms that presumably underly these conditions. Currently known important molecular targets include voltage-gated sodium and calcium channels, the γ-aminobutyric acid (GABA) system and ionotropic glutamate receptors. Metabotropic glutamate receptors, potassium channels, and neurotransmitters such as acetylcholine, glycine, and monoamines are beyond the scope of this review. In status epilepticus, immediate failure of GABAergic inhibition occurs, and administration of benzodiazepines and barbiturates displays the pharmacostrategic mainstay. In epileptogenesis within limbic structures, the most important underlying pathophysiological mechanisms currently discussed are transient loss of inhibition and aberrant mossy fiber sprouting. Both processes may be facilitated by N-methy-d-aspartat (NMDA) receptor regulation. NMDA antagonists may exhibit antiepileptogenic properties in experimental animals, but reliable data in humans are lacking. In established epilepsy, voltage-gated ion channels and impairment of GABAergic functions contribute to mechanisms facilitating ictogenesis. Blockade of sodium and calcium channels and enhancement of GABAergic inhibition are currently the most important tools to prevent the occurrence of seizures. Received 16 January 2007; received after revision 7 March 2007; accepted 17 April 2007  相似文献   

19.
In contrast to the reported effects of polyamines on the high affinity neurotransmitter uptake, two polyamine-like spider toxins significantly increase the high affinity uptake of glutamate as demonstrated with high resolution autoradiography. The effects of both spider toxins were compared to those of a polyamine toxin from the wasp Philanthus triangulum, which is known to inhibit the high affinity glutamate uptake.  相似文献   

20.
In contrast to the reported effects of polyamines on the high affinity neurotransmitter uptake, two polyamine-like spider toxins significantly increase the high affinity uptake of glutamate as demonstrated with high resolution autoradiography. The effects of both spider toxins were compared to those of a polyamine toxin from the waspPhilanthus triangulum, which is known to inhibit the high affinity glutamate uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号