首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
傅里叶级数展开的几个问题   总被引:1,自引:0,他引:1  
讨论了傅里叶级数展开的三个问题:1.f(x)是以2π为周期的函数与f(x)只定义在[-π,π]上的傅里叶级数展开有何区别?2.只给出f(x)在一个周期或半个周期内的定义,那么函数在区间端点处的取值有什么要求;3.若f(x)是以2l为周期的函数,则f(x)也是以2kl为周期的函数,这时,f(x)的傅里叶级数展开式是否与周期无关.澄清了某些现行教材中的模糊问题.  相似文献   

2.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

3.
1.我们知道1/2~(1/2),cosx,sinx,…,cosnx,sinnx,…(1)是区间[-π,π]上的完备正交函数系,其中的任何一个函数的平方在[-π,π]上的积分都等于π。若函数f(x)∈L(-π,π),则其付里叶系数由于函数系(1)的完备性,如果f(x)∈L_2(-π,π),则式(2)右边的三角级数在(-π,π)上均值收斂于f(x),即  相似文献   

4.
福氏级数点收敛的充要条件Izumi和KOPOBKNH都作了研究。Izumi[1]指出:如果,f(x)是偶周期函数满足条件 即0点是勒贝格点条件下, (f)在0点收敛的充要条件是 而KOPOBKN[2]指出:如果f(x)∈L(-π,π)x0是f(x)的勒贝格点即 这里 (x)=f(x0+x)+f(x0-x)-2f(x0),则 (f)在x0收敛的充要条件是 这里 。本文给出比勒贝格点为弱的条件 下,福氏级数收敛的充要条件,它可以看作Izumi结果的改进,并且指出它也可以看作著名的勒贝格准则的推广。 定理1 给出一个充要条件,推论指出它可以看作勒贝格准则的推广。定理2给出等价的充要条件,其形式类似于I…  相似文献   

5.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

6.
1.假如f(x)∈L[0,2π],且在[0,2π]的子区间[a,b]上是连续的,那末我们写着f(x)∈L[0,2π]·C[a,b], ω_2(f,δ;a,b)= sup |f(x+h)+f(x-h)-2f(x)|.关于这类函数的富里埃级数f(x)~a_0/2+sum form n=1 to ∞(1/n)(a_n COS nx+b_n sin nx),Flett,Sunouchi等作者讨论了蔡查罗局部逼近问题。本文的目的是在详尽地讨论这个局部逼近问题,指出局部性与整体性的差别,并且解决了局部饱和问题。我们建立两个定理。定理1.设f(x)∈L[0,2π],ω_2(f, δ;a,b)=O(δ~β),f(x)的富里埃系数a_n,b_n=O(n~(a-β)).则(i)当0<β<1时,在[α+2ε,b-2ε]中均匀地成立着σ_n~α(f;x)-f(x)=O(n~(-β));(ii)当β=1时,f′(x)在[a,b]中是有界的话,在[a+2ε,b-2ε」中均匀地成立着  相似文献   

7.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

8.
设C_(2π)丧示以2π为周期的连续函数全体,对于f C_(2π),著名的Fejer算子是关于用F(f,x)逼近f(X)的部分研究成果参见文[1—7],熟知有下列结果定理A~1F(f,x)-f(x)=0(1/n),(n→∞)当且公当f=const(常数)其中f是f的共轭函数。定理B~2 设函数f∈C_(2π)且在某点x处,f_+'(x)和f_-'(x)存在,则  相似文献   

9.
设函数f(x)∈L(0,2π)是以2π为周期的周期函数,它的福里哀级数是 sum from 0 to ∞ (A_n(x))≡1/2α_0 sum from 1 to ∞ (α_ncosnx b_nsinnx) 固定x,瓦虚尼[1]证明了:当函数  相似文献   

10.
设S_n(x)(n=1,2,……)表示f(x)∈L(0,2π)的富理埃级数的部分和。 R·Mohanty和S·Mohapatra证明了:如果(f(x+t)+f(x-t)-2S)/t∈L(0,π),则级数∑((S_n(x)-S)/n)是|c,δ|可和,其中δ>0。在本文中,我们推广这个结果成下面的定理:令{p_n}是使得p_n≥0,P_n=p_0+…+p_n→∞且∑|△V_n|<∞,其中V_n=(n+1)p_n/P_n,的数列,同时满足 sum from k=n to ∞ 1/((k+2)P_n)=O(1/P_n), 则,当[f(x+t)+f(x-t)-2S]/∈L(t,π)时,级数∑(S_n(x)-S/n)在x点是|N,p_n|可和。  相似文献   

11.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

12.
在[1]中,作者讨论了L_p[0,2π](1≤p≤∞)中函数用它的富里埃级数典型平均的逼近问题,并讨论了一些局部逼近定理。本文用[1]中一些结果讨论一些三角级数和奇异积分。设f(x)~sum from n=0 to A_n(x),其中A_0(x)=a_0/2,A_n(x)=a_ncosnx+b_nsinnx,B_n(x)=b_ncosnx  相似文献   

13.
当p为偶数时的情形,可采用傅里叶展开和留数定理计算求和结果:利用f(x)=x(2k)在x=π处的傅里叶展开式可得出,留数方法在于将级数求和转化成相应某复值函数在一个闭域中的留数之和,不涉及展开式,更为简洁直观。  相似文献   

14.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

15.
文[1]的定理1是[1],[2]的立论基础,它是文“Grace定理的一个推广”(见《高等数学》,2:1(1986)中的一个结果。而定理1是不成立的,有反例如下:f(x)=e~z,a=0,b=2πi,则f(z)是复平面上的初等解析函数,虽然f(0)=f(2πi)=1,但对复平面上任何一点z,都有(e~z)′=e~z≠0。文[1]引理1也是不成立的,令F(z)=e~z-1,a=0,b=2πi,n=0,即可明了。不仅如此,即使在实轴上定义的可微函数,只要其值域超出了实数系,中值定理便不再  相似文献   

16.
设f(x)∈L_p[0,2π](1≤p≤∞),下列事实是已知的:存在一个以2π为周期的连续函数,积分 integral from n=+0 to π(f(x+t)+f(x-t)-2f(x))/t dt (1)处处发散。本文的目的是讨论积分(1)收敛的充要条件。如同我们在[1,2]中讨论的方法一样,我们需要(L~*)求和法。定义设R是一个巴拿赫空间,以‖u‖表示R中元素u的模.设u=∑u_n是R中一个级数,称  相似文献   

17.
给出了将m次多项式展开成付立叶级数时,求付氏系数的积分展开式及积分的任一项展开公式并给出了由首项迅速简捷地求出积分的全部展开式的方法。从而简化了多项式展开成付氏级数的运算。设f(x)是一个m次多项式,它以2l为周期,将f(x)展开成付氏数,在求付氏系数时,得到结果:系数α_n的积分展开式共m+1项,其中第k项为 (-1)(k+3)(k+2)/2f~(k-1)(x)· sin[nπx/l+1+(-1)~k/2 π/2]/(nπ/l)~k,对b_n也有类似的结果。  相似文献   

18.
§1、设函数ω(t)(0≤t≤π)是连续模,用H[ω]_L表示满足条件 ‖f(x+t)-f(x)‖_L=integral from n=-π to π(|f(x+t)-f(x)|dx≤ω(t))的有周期2π的周期可积函数f(x)所成的函数类。又用S_n(x、f)表示f(x)的富里埃级数的开头几项和,σ_(n,p)(x,f)表示瓦雷—布然平均:  相似文献   

19.
设f(x,y)是对每个变量都是以2π为周期的实函数,首先给出了二元Λ有界变差函数的概念.在区域T2=[-π,π]×[-π,π]上讨论二元Λ有界变差函数f(x,y)的Fourier级数的系数∧f(m,n)阶的估计.若f(x,y)∈ABV(T2)在(0,2π]×[0,2π]区域上连续,给出并证明了f(x,y)的Fourier级数绝对收敛的充要条件.  相似文献   

20.
一个函数f(x)称为周期函数,如果存在常数T≠0,使得等式f(x T)=f(x)对所有的x∈(-∞, ∞)都成立。使上式成立的最小正数称为函数f(x)的周期。例如三角函数sin x,cosx是以2π为周期的周期函数,而复合函数sin(ax b),(a≠0)则是以2π/a为周期的周期函数。在f(x)是次数大于1的多项式时,复合函数sin[f(x)]是否是周期函数呢?答案是否定的。我们将证明下述命题:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号