首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
目的为解决基坑开挖时结构的安全与稳定问题,对基坑工程的变形进行分析,找出影响规律.方法以营口某深基坑工程实例为研究背景,整理现场得到的桩顶位移、地表沉降及深层土体水平位移等监测数据,对基坑工程的支护结构和周围土体及墙后土体在施工过程中产生的位移变化进行分析.结果支护结构相同的挡墙坑角处变形最小,中间位置变形最大,并且基坑变形随着开挖深度的增加而变大.开挖深度较大的软土地区基坑周边深层土体水平位移曲线类型大致表现为抛物线形,其最大水平位移大致为(2.0~10.0)×10-4hd,通常发生在基坑工程底部附近.结论深基坑工程的支护结构顶部水平位移与竖向位移变化趋势一致,表明二者的产生条件和影响因素大致相同.坑底部下面土体的水平位移对于坑底隆起有着直接影响,支护结构的强度越低,坑底部隆起的增强区域的范围也越大.  相似文献   

2.
利用FLAC3D数值模拟软件,按照实际施工工序模拟基坑开挖支护全过程,得到了桩锚支护结构以及基坑外土体沉降和基坑侧壁水平位移随基坑开挖的变形规律:随基坑开挖深度的增加,基坑外土体沉降逐渐增大,变化曲线呈"勺状"分布;基坑顶和基坑侧壁水平位移随开挖深度增加均逐渐增大且都在开挖至基坑底时位移最大;桩身弯矩最大值处基本出现在基坑开挖深度1.5 m以上的位置,最大负弯矩值为76.7;锚索轴力最大位置出现在锚索的端头处,且从端头位置向端尾位置逐渐减小,而第1排至第3排锚索最大值逐渐增大,说明支护结构中第2、3排锚索起主要作用,验证了深基坑桩锚支护的可行性。  相似文献   

3.
温州深厚软土地层城市轨道明挖深基坑施工环境效应实测   总被引:3,自引:3,他引:0  
基于深基坑施工存在的环境效应问题,依托温州市域铁路S1线机场标段,通过对53个断面的现场实测及数据分析,研究了温州深厚软土地层城市轨道明挖深基坑的施工效应规律。结果表明:①坑外地表沉降呈明显"锅底"型,在第二道钢支撑施工完成后,地表沉降速率明显加快,影响范围约为3. 5倍基坑深度。通过测点统计,地表最大沉降点位置分布于区间H-3~H+15(H为基坑最大开挖深度,m),最大沉降范围为(0. 2%H~1. 67%H)。②地下连续墙水平位移表现为"臌胀"型模式,第二道钢支撑完成后加速变形。通过测点统计,最大水平位移点位置分布区间为H-5~H+2;最大位移范围是(0. 05%H~0. 8%H),平均值为0. 3%H。③坑外深层土体水平位移表现为"臌胀"型。通过测点统计,最大位移点位置分布区间为H-3~H+2,最大水平位移范围为(0. 13%H~1%H),平均值为0. 25%H。④坑外深层土体与地连墙表现为的相同水平位移模式和速度趋势。但在相同高度点位置,土体水平位移均大于地连墙,且深层土体变形持续时间明显长于地下连续墙。研究成果可为类似地区明挖深基坑施工提供借鉴。  相似文献   

4.
地铁的修建尤其是车站的施工和盾构的始发过站等都涉及深基坑的开挖,需要通过监测关注开挖过程中的基坑变形.以佛山地铁二号线湾华站深基坑为工程实例,对围护结构和坑外地表的监测数据进行了整理分析.结果表明,围护桩在开挖过程中表现出内凸型的变形模式,最大水平位移发生在0. 7倍至0. 8倍开挖深度处.坑外地表沉降呈现出凹槽形,最大地表沉降发生在距坑边3 m处.根据实测和理论分析,该基坑开挖的影响范围为2倍开挖深度.  相似文献   

5.
为了确保基坑开挖中周边环境的安全,以西安地铁某车站深基坑开挖为例,运用ABAQUS软件建立三维模型模拟开挖对周边地表沉降和围护结构变形的影响,重点研究开挖中周边地表的沉降分布规律和围护结构变形的规律,并与现场实际监测数据进行对比分析。结果表明:地表沉降的实测值比模拟计算值大,但变化趋势基本一致;在基坑开挖过程中,地表最大沉降位置距离基坑边缘约11 m处,最大值为3.298 mm;围护结构水平变形沿开挖深度的变化曲线呈抛物线形,最大水平位移位于基坑最大开挖深度的 1/2 处,最大水平位移为11.05 mm,距基坑长边边缘0~25 m及短边边边缘0~22 m范围内的地表沉降最大,施工监测中应重点关注。  相似文献   

6.
为研究高水位红砂岩地层基坑降水开挖引起的变形规律,以兰州东方红广场地铁车站深基坑工程为背景,对基坑降水开挖过程中桩体水平位移以及坑周地表沉降进行现场监测.采用有限差分软件Flac3D对基坑降水开挖过程中的位移进行模拟计算.监测结果表明:随着基坑开挖深度的增加,桩体最大水平位移的位置逐渐下移,最终靠近基坑底部,大约在坑底以上1~2 m;地表最大沉降值出现在距离基坑边5~7 m处,大约0.29~0.41倍的基坑开挖深度;桩间水土流失是造成地表沉降过大的主要原因.模拟结果与实测结果对比分析得出:地表沉降模拟值与监测值变化趋势基本一致;桩体在距地面小于12 m部分其水平位移模拟值与实测值非常接近,大于12 m部分实测值明显大于模拟值.  相似文献   

7.
为了分析高填土基坑降水开挖对周围环境的影响及基坑稳定性,笔者以实际工程为例,对该基坑的地下水位、深层水平位移、地表沉降值、锚索轴力和桩顶水平位移进行了监测.监测分析表明,在施工过程中,基坑周边地下水位的变化大且变化不均匀,部分已超过了预警值;随着开挖深度的增加,深层水平位移随深度的变化曲线由线性逐渐向"弓"形分布转变,最后深层水平位移最大值位于地表以下一定深度;在施工过程中地表沉降可分为急剧增长和平稳增长两个阶段,地表沉降主要发生在基坑开挖期;桩顶水平位移和锚索拉力均随开挖深度的增加而增大,当基坑开挖至设计标高时达到最大并趋于稳定,测试值均小于预警值,满足要求.  相似文献   

8.
以兰州市东方红广场地铁车站红砂岩深基坑为研究对象,对基坑开挖过程中围护桩位移和基坑周边地表沉降进行现场监测,并对实测结果进行分析;采用MIDAS GTS数值模拟软件,分别建立深基坑开挖支护和渗流分析的三维模型,对深基坑在开挖过程中的位移进行模拟计算.结果表明:桩的水平位移随桩体嵌入深度先增大后减小,整体呈")"形前倾,...  相似文献   

9.
于家堡深基坑位于天津软土地区,整体开挖规模达10×104,m2.依据监测数据,详细分析了基坑施工各阶段的围护桩身变形、土体侧移以及坑外地表沉降的变形及发展规律.分析结果显示,该基坑支撑刚度和施加位置对排桩变形模式起决定性作用,桩身最终仍呈"倒三角"悬臂排桩的线性变化规律,最大位移仍出现在桩顶.第2步开挖对该基坑围护结构影响很小,围护桩及土体变形均主要发生在第1步开挖.监测数据分析揭示了该超大规模深基坑的实际状态,可为类似超大规模深基坑工程的围护结构设计和科学施工提供参考.  相似文献   

10.
以南宁地铁4号线那洪立交站附属围合区富水圆砾层深基坑为工程实例,对围合区基坑双排桩的桩顶水平位移、桩身水平位移、坑外地表沉降及地下水位进行监测,进而对基坑双排桩支护结构的变形规律进行分析,同时对止水帷幕效果进行评价.结果表明:受基坑开挖及圆砾土性质影响,桩顶水平位移在前期增长较快,受泥岩流变特性影响,停工期的变形呈现一定时间效应;桩身水平位移曲线呈"鼓胀"形,因双排桩刚度大且能够协调自身内力和变形,最大值仅为23.22 mm,桩底处几乎没有产生位移,嵌固稳定性较好;坑外地表沉降曲线受桩侧阻力影响呈"凹槽"形分布,最大值仅为0.12%H(H为基坑深度),基坑开挖对周边地表的影响主要在0.7H范围内的主要影响区;相较于监测起始水位,坑外地下水位最低点为950 mm,表明高压旋喷桩具有良好的止水效果.综合分析在圆砾层中采用双排桩支护结构是可行的,采用高压旋喷桩止水帷幕能满足施工要求.  相似文献   

11.
以两个相邻桩锚支护的基坑工程为实例,基于小应变硬化土(HSS)模型,通过Z-Soil岩土有限元分析软件建立数值计算模型,分析相邻基坑开挖对基坑变形的影响.分析结果表明:相邻桩锚基坑开挖明显减小排桩桩顶水平位移、排桩深层水平位移、坑间土体深层水平位移和坡顶水平位移,对于桩顶水平位移的影响最为显著;相邻桩锚基坑开挖也增大坑间地表沉降,产生的沉降接近两个单坑引起的沉降叠加,最大沉降位置出现在两基坑的正中央;相邻桩锚基坑的支护设计宜考虑相邻基坑开挖的影响,宜以变形不超过单坑开挖产生的水平位移为控制基准.  相似文献   

12.
基于新建天津地铁5号线与既有地铁1号线十字换乘车站——下瓦房站的现场实测数据,研究深基坑开挖与既有车站十字相交时,基坑围护结构、墙后地表和既有车站的变形规律.研究结果表明:围护结构最大水平位移约0.064%H(H为基坑开挖深度),位于地表下约0.63 H.墙后地表最大沉降约0.025%H,位于墙后约0.71 H,沉降槽影响范围约为2 H.墙后地表最大沉降与围护结构最大水平位移的比值介于0.38~1.04之间,平均约为0.77.与基坑开挖方向交叉的既有地铁车站竖向上浮,水平方向外凸,以水平变形为主.既有车站周围止水加固和加固墙后软弱土层可显著减小既有结构变形.  相似文献   

13.
为解决某深基坑不同支护方式的选择问题,为基坑工程设计与计算提供参考依据,运用岩土工程软件FLAC3D对某深基坑工程不同支护方式开挖过程中地表和围护结构变形安全性问题进行研究.研究结果表明:在内撑式排桩支护下FLAC3D数值模拟得到的地表和围护结构最大位移值分别是22 mm和20 mm,而在桩锚支护下地表和围护结构最大位移值是30 mm和25 mm.该深基坑工程采用内撑式排桩支护和桩锚支护都能够有效地抵抗基坑土体的位移,减小围护结构的水平位移,但内撑式排桩支护效果更好.  相似文献   

14.
软土地区基坑开挖时周围土体及支护结构的变形与稳定受时间、空间效应影响显著。为研究时空效应对基坑地表沉降、基坑外潜水水位、砼支撑轴力及围护桩深层水平位移的影响,以上海陶家宅块地为工程背景,通过对实测数据进行分析,探讨各个监测项目的变形特性。数据分析表明:地表沉降的最大值位于围护墙后约基坑挖深距离处,1~2倍挖深范围内沉降呈递减趋势;坑角位置处内支撑轴力小于基坑中部,支撑轴力在基坑开挖阶段增速较大,在垫层施工完毕,底板发挥作用后趋于稳定;当基坑开挖深度约为围护桩长1/2时,围护桩深层最大侧向位移出现在自然地面±0.00以下,开挖面以上(0.73~0.82)H范围内;软土地区基坑开挖完成至底板浇筑阶段,土体的蠕变是导致基坑变形随时间变化的主要因素。对坑周地表沉降及基坑不同位置处围护结构侧移提出合理的预测公式,有效地对基坑变形进行动态控制以实现信息化施工。  相似文献   

15.
以海口市某砂与淤泥互层地基深基坑工程为背景,通过对其施工期间动态监测数据的分析,总结了该深基坑工程的支护结构变形、周边地表沉降变形及水位变化等特征.分析结果表明:支护结构变形主要发生在基坑开挖阶段,最大水平位移位于长边中心处;基坑开挖的影响范围主要集中于0~2 H处(H为基坑开挖深度),最大可延伸至距基坑边缘约为3 H处,产生最大沉降量位置约为支护结构后0.7~0.9 H处;基坑开挖引起的周边水位变化较小,10月份水位变化波动较大,11月后水位比较稳定.  相似文献   

16.
为进一步研究复杂环境下复合土钉墙的施工技术措施,以微型桩预应力锚杆复合土钉支护结构为研究对象,运用ABAQUS进行数值模拟,得出开挖过程中的侧向变形、坑底隆起和地表沉降曲线及土钉(锚杆)轴力图,并据此提出环境保护技术。分析结果表明:(1)随着开挖深度的增加,侧向位移向基坑内凸起,呈"鼓肚"形,最大位移出现在0.7倍开挖深度附近;(2)坑底隆起量由坡脚位置向基坑中部逐渐增加,中部隆起量最大,坡脚隆起量较小;(3)坑外地表沉降呈"勺"状,沉降的最大值发生在桩后1.4倍开挖深度附近;(4)微型桩的设置使得锚杆轴力降低幅度很大,最大值约62.16%;(5)"动态化设计"与"信息化施工"可以监测与指导复杂环境下复合土钉支护结构的设计和施工。  相似文献   

17.
"两墙合一"条件下地铁车站深基坑变形特性   总被引:1,自引:0,他引:1  
针对地铁车站深基坑施工主体回筑后受力变形特性与空间效应复杂的问题,综合采用模型试验和数值模拟方法,对土体沉降与支护体系变形特性进行分析,得到地连墙水平位移、周围地表沉降规律、沉降与位移之间的相互影响关系以及基坑的三维空间效应.研究结果表明:本文条件下地表沉降的主要影响范围为0.5He~1.5He(He为基坑深度);最大地表沉降与地连墙最大水平位移的比值为1.0~1.6,地表沉降随地连墙水平位移的增大呈非线性增大,最大地表沉降、地连墙最大水平位移与开挖深度具有线性关系;基坑边角效应对地表沉降的影响大于对基坑水平位移的影响,基坑水平位移的空间效应相比地表沉降大约滞后0.5He的距离.  相似文献   

18.
为了探究竖向荷载(V)和水平荷载(H)组合作用下的地铁车站围护结构变形特性,以南宁地铁5号线某地铁车站基坑为依托,首先采用FLAC3D有限差分软件对基坑开挖支护进行数值模拟,将受V-H组合荷载和仅受水平荷载作用的基坑围护结构变形计算结果进行对比分析,然后将数值计算得到的规律与现场监测数据进行对比验证.结果表明:现场实监测值与数值计算值较吻合,受V-H组合荷载和仅受水平荷载作用的基坑围护桩变形形式一致,预先作用的竖向荷载对桩身变形形式的影响较小;预先作用的竖向荷载能使围护桩身最大水平位移位置下移,下移深度约为开挖深度的12.5%;监测结果显示,V-H组合荷载下的围护桩身最大水平位移增大约27%,削弱了围护桩的水平承载力,同时预先作用的竖向荷载使内支撑轴力增大约10%.  相似文献   

19.
结合某地铁车站基坑开挖工程,基于基坑支护结构的现场实测数据,对排桩内支撑基坑支护体系桩顶水平位移,桩体侧向位移及基坑周边土体沉降量进行分析,得出基坑围护结构各项位移和周边土体沉降随时间及开挖深度的变化规律.建立研究区二维有限元模型,并将实测数据与模拟值进行对比,研究支护结构内力变化及桩后土体应力状态.研究结果表明:基坑长边桩顶水平位移约为短边桩顶水平位移的3倍,桩体最大侧向变形量位于1/2H(H为基坑开挖深度)处;基坑开挖及降水引起地面沉降范围约3H,基坑周边各监测断面最大沉降量出现在距基坑边22m处(约0.82H~0.96H),内支撑架设有助于增大基坑整体稳定性.  相似文献   

20.
结合深基坑变形机理和工程案例,对厦门某地区一深基坑的周边土体深层水平位移、围护桩水平、竖向位移、地下水位等监测成果进行分析,以研究深基坑施工过程中的变形特性和变化规律.研究结果表明:工程地质条件、基坑开挖深度、周边荷载以及支撑拆撑过程等是引起深基坑变形及稳定性的主要因素;合理结构设计和土方开挖方案,并根据监测数据实时指导施工和采取合理控制变形的措施是确保基坑安全的基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号