共查询到18条相似文献,搜索用时 62 毫秒
1.
无模型控制方法在直线电机控制中的仿真研究 总被引:6,自引:0,他引:6
将基于偏格式线性化的非线性系统无模型学习自适应控制方法应用在直线电机的速度和位置控制中.控制器的设计是直接基于称为伪偏导数的向量,伪偏导数是通过新型参数估计算法,根据给出的永磁直流直线电机非线性系统模型的输入输出信息在线导出的。利用Matlab软件进行仿真实验证明了该方法对电机这种具有不确知动态的非线性系统的有效性和稳定性。 相似文献
2.
未知非线性系统的神经网络跟踪控制与仿真研究 总被引:6,自引:0,他引:6
应用输入/输出反馈线性化方法和李亚普诺夫方法,研究了一类具有未知非线性函数的非线性动态系统的自适应鲁棒输出跟踪控制问题。首先通过坐标变换和输入变换,将非线性系统变换为部分线性可控系统。接着采用多层前向神经网络来逼近未知非线性函数,网络的权值根据李亚普诺夫原则来在线修正,这样就克服了多神经网络控制系统中存在的稳定性问题。同时,为了减少权值学习时间,应用遗传算法预先离线训练网络权值。最后提出了一个基于神经网络建模的自适应鲁棒控制律,给出了李亚普诺夫意义下的稳定性证明。所提出的控制律可确保相应闭环系统的状态及跟踪误差一致最终有界。所给的Van der pol系统的例子说明了所提控制方案的有效性与鲁棒性。 相似文献
3.
双机编队飞行自适应神经网络控制设计与仿真 总被引:1,自引:0,他引:1
飞机编队飞行控制的关键技术就是保持编队队形并且跟踪指定的飞行路径.考虑到编队飞机之间的相互影响,根据相对位置和全局坐标系统(编队中心)采用混合控制结构对编队飞机进行控制,使用神经网络自适应控制技术使得两机具有良好的模型跟踪能力,以便于僚机实现良好的跟踪,保持编队之间的相对距离;同时设计三通道神经网络混合PID控制器使得飞行控制系统快速跟踪指令,保持编队队形.以两架无人机为研究对象进行仿真,结果表明设计的编队飞行控制系统具有较强的稳定性和自适应跟踪性能. 相似文献
4.
大型轮式工程车辆转向系统的神经网络PID控制 总被引:6,自引:0,他引:6
根据大型轮式工程车辆转向系统的对象特点和操纵方式,提出采用基于RBF神经网络控制器来改进常规PID控制器实现系统控制性能。该控制系统结构中,RBF神经网络辨识器(RBFNNI)实现对被控对象的Jacobian矩阵信息的辨识,神经网络控制器(NNC)是基于RBF神经网络实现的单神经元的PID控制器。在对算法进行改进的基础上设计了神经网络结构,并进行了被控对象的仿真分析。实际结果表明该控制方法具有较好的实用性和鲁棒性,可以用于多操纵模式工程车辆转向系统的控制。 相似文献
5.
提出一种基于神经网络的模糊非参数模型自适应控制方案。该方案仅用受控系统的I/O数据来设计控制器,综合了模糊控制、神经网络与非参数模型学习自适应控制各自的优点。仿真表明该控制器对模型、环境具有较好的适应能力和较强的鲁棒性。 相似文献
6.
针对一般模型参考自适应控制方法在解高阶非线性模型时参考模型阶数较高的不足,采用一种任意模型参考自适应控制降低了参考模型的难度。利用隐层神经网络对模型进行逼近,对线性化时由不确定因素导致的误差进行补偿,并利用直接Lyapunov稳定性理论证明了跟踪误差有界,最后将其应用到飞行器纵向非线性模型的自动着陆下滑控制设计中。仿真结果表明,所设计的控制器能够使飞行器较好地跟踪理想着陆轨迹,从而验证了方法的有效性。 相似文献
7.
基于神经网络的非线性系统的间接自适应控制 总被引:3,自引:0,他引:3
针对一类不确定非线性动态系统 ,利用多层神经网络系统MNNs的逼近能力 ,提出了一种间接鲁棒自适应神经网络控制器的设计方案。该方案不仅能够保证闭环系统的所有信号有界 ,而且理论分析证明了闭环系统的跟踪误差渐近收敛到零。仿真试验表明本控制算法是有效的。 相似文献
8.
针对一类小型低速自主水下航行器(AUV)的垂直面运动控制问题,设计了一种改进的PID神经网络控制器,实现对水下航行器在垂直面内深度和俯仰角的全局控制。利用REMUS水下航行器模型搭建了Simulink下AUV垂直面仿真控制系统,仿真结果表明,改进的控制方法克服了原方法中饱和区过大的问题,具有良好的动态性能同时能够适应不同的学习速率和网络初始权重,对水下航行器的工程实际应用具有一定参考价值。 相似文献
9.
基于动态神经网络的PID参数整定与实时控制 总被引:9,自引:1,他引:9
提出了一种基于对角回归神经网络的PID控制器结构,给出了PID参数在线自整定的学习控制算法。为检验控制效果同时还使用了静态BP网络来整定PID参数,并在Matlab环境下,分别建立了基于对角回归神经网络和BP网络的液位实时控制系统。实际的控制效果说明,基于动态网络的PID控制器工作稳定,具有较好的鲁棒性。 相似文献
10.
基于RBF神经网络的多变量系统PID解耦控制 总被引:8,自引:0,他引:8
针对工业生产过程中的多变量耦合系统采用传统控制方法不能达到满意的效果,提出了一种基于神经网络的PID解耦控制方案。在实验研究中,采用改进型动态BRF神经网络辨识器,在线辨识多变量系统的非线性时变模型,同时自动调整PID控制器各项参数,最终实现对系统的智能化解耦控制。给出了BRF神经网络的拓扑结构和算法,并对一组二变量强耦合时变系统的控制过程进行了计算机仿真,结果表明:基于BRF神经网络的PID控制不仅超调量小、响应速度快、控制精度高,而且具有很强的鲁棒性和自适应能力。该设计方案使得解耦后的多变量系统具备了良好的动、静态特性。 相似文献
11.
12.
13.
14.
提出一种采用神经网络非线性系统控制的结构及原理.即采用两个BP神经网络,一个用来对被控系统进行在线辨识,另一个用做非线性自适应控制器.并对具有未知外部负载干扰的电液位置伺服系统进行了动态仿真,讨论了神经元激励函数形状因子、神经网络节点数以及神经网络训练次数对控制系统性能的影响 相似文献
15.
基于遗传神经网络的自整定PID控制器 总被引:5,自引:0,他引:5
提出了一种基于遗传算法和神经网络的自整定PID控制器的设计方法。该控制器主要由三个部分组成。第一部分利用遗传算法搜索出一组准优的PID参数,作为PID控制器参数的初值,第二部分利用神经网络具有逼近任意非线形函数的能力,在线调整PID参数,以确保系统的响应具有最优的动态和稳态性能,第三部分是传统的PID控制器,直接对被控对象闭环控制。计算机仿真结果表明,这种控制算法鲁棒性强,响应速度快,可用于控制不同的对象和过程。 相似文献
16.
17.
18.
结合高增益观测器,针对相对阶为n的非线性系统,设计了神经网络自适应控制器。利用Lyapnov定理获得了神经网络权值的更新律和控制器的控制律,从而确保了整个闭环系统的稳定性和有界性。由于神经网络不需任何的离线训练,因而该控制器能够广泛应用于一大类非线性性系统的控制中。仿真结果验证了控制方案的有效性。 相似文献