共查询到18条相似文献,搜索用时 59 毫秒
1.
针对U-Net图像分割在下采样过程中会丢失过多信息且在上采样过程恢复效果不佳,从而导致图像分割精度降低的缺陷,提出了一种基于多层次自注意力机制的U-Net图像分割算法。该多层次自注意力机制在每一层上采样层前均嵌入自注意力模块,将上采样层的输入与缩放的原图拼接后处理成模板图,再与原本的输入信息融合后输出到上采样层。该算法不仅能通过拼接原图的自注意力模块进一步提供更多细节信息,还能利用上采样层的特征选择功能减少拼接原图带来的背景噪音,提高模型的分割精度。最后,在PASCAL VOC数据集和DeepFashion2数据集的基础上进行了人体分割和服装分割实验。实验结果 证明,该方法 能较好地改善图像的分割性能,从而证明了其正确性和有效性。 相似文献
2.
为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu, PSPnet, Segnet, DeeplabV3+, U-Net进行对比,结果表明, 本文方法在各项指标上均优于其他分割方法. 相似文献
3.
张竞丹 《中山大学学报(自然科学版)》2010,49(2)
提出一种基于图的层次聚类算法实现脑组织磁共振图像的自动分割。首先,采用基于图的分割方法对脑组织MR图像进行初始分割。由于脑组织MR图像各类组织结构分布复杂,尤其是脑脊液和灰质区域细节信息丰富、结构变化多样,分割结果中存在过分割现象。因此,利用对偶树复小波变换高频子带信息构造基于图的分割方法中参数k的自适应取值函数,避免图像平滑区域分割后产生大量小区域。然后,以层次聚类算法合并分割得到的小区域,解决基于图的方法分割脑组织MR图像中存在的过分割问题。最后,通过大量真实脑组织MR图像实验证明该方法在脑组织MR图像分割中的准确性和稳定性。 相似文献
4.
准确分割核磁共振(magnetic resonance, MR)图像中的脑组织是临床诊断、手术计划和辅助治疗的关键步骤.深度学习在各种图像分割任务中表现出巨大潜力,现有模型没有一种有效方法汇总远距离像素间的关系.在网络解码阶段不能很好地融合不同层级的特征,导致无法准确定位.为克服上述问题,本文提出一种基于空间自注意力机制和深度特征重建的脑MR图像分割方法,构建了一个可以融合3维信息的2D模型,可快速准确对3D结构图像进行密集预测.在MRBrainS13数据集和IBSR数据集上进行充分地实验研究,结果表明本文方法在3D多模态和单模态脑MR图像分割方面优于目前的2D模型,运算和推理时间相比3D模型小很多,性能却十分接近. 相似文献
5.
针对U-Net网络感受野受限以及信息丢失导致的分割精度低的问题,提出了一种基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割算法.首先,在U-Net网络中引入感受野模块(receptive field block,RFB)来增大网络的感受野,解决了网络由于感受野受限带来的分割精度低的问题.此外在网络中引入有效的通道注意模块(efficient channel attention,ECA)来增加网络对有用特征的响应,抑制网络中的冗余特征.使用BraTS(the brain tumor image segmentation challenge)提供的脑肿瘤MR图像数据对本文算法进行测试,用Dice相似性系数等指标进行评价,结果显示在完整肿瘤、核心肿瘤以及增强肿瘤的Dice值分别可达到0.86、0.86、0.79.与U-Net模型以及其他的网络相比得到了提高.实验结果表明,本文提出的算法能够有效提升脑肿瘤分割的精度,具有良好的分割性能. 相似文献
6.
乳腺核磁共振影像( MR)的有效分割一直是医学影像分析领域的研究热点。针对目前人工解读图像信息的不足,提出一种自动化分割乳腺MR图像的方法,该方法结合传统FCM算法和最小距离分类器实现了感兴趣区域中不同位置、灰度值相似的样本点按距离分类。算法首先根据图像的灰度信息利用FCM算法实现聚类,其次自动提取感兴趣区域的聚类信息,并利用最小距离分类器对其按距离分类。实验结果表明,该算法对乳腺核磁共振影像的分割具有较高的准确性,提高了其组织划分的精度,且自动化程度比较高,为后续进行肿瘤区域的自动提取与识别奠定基础。 相似文献
7.
在Tamura纹理特征和支持向量机(SVM)算法基础上提出一种多模态脑肿瘤图像分割算法.将4种模态下的多序列核磁共振图像(MRI)的局部灰度特征与Tamura纹理度量相结合,尽可能提取足够多的图像信息;在SVM模型中输入已知样本并进行训练;用训练好的SVM模型处理其他脑肿瘤图像.实验通过对20例患者的图像进行展开,从实验数据来看,提出的方法可以精准有效地分割出脑肿瘤区域,得到脑肿瘤的边界,并且对脑肿瘤图像的差异性表现出较强的自适应能力. 相似文献
8.
在乳腺癌MR图像分割中,传统C-V模型没有充分利用图像边界曲率信息,需要重新初始化水平集函数使其保持为一个符号距离函数(SDF),导致图像分割比较慢,同时目标区域易产生过度分割.为此,通过在传统的C-V模型中引入惩罚能量项和全局边界曲率能量项,提出一种改进的C-V模型图像分割方法,克服了水平集函数需要重新初始化和目标区域易产生过度分割等问题.实验表明,改进的C-V模型对乳腺癌MR图像具有较好的分割效果,分割收敛速度较快. 相似文献
9.
目的 由于大多数脑部胶质瘤边界有水肿且内部结构复杂,分割胶质瘤及瘤内结构难度较大。提出一种新的基于多模态MRI 3D卷积神经网络(CNN)脑部胶质瘤及瘤内各结构的自动分割算法。 方法 首先,标准化由T1、T1c、T2、FLAIR 4个MRI模态组成的输入图像。其次,构建10个卷积层、2个全连接层的3D CNN。卷积层采用3×3×3 的3D 卷积核;全连接层采用PReLu激励函数,并结合dropout技术防止过拟合。结果 构建的3D CNN分割胶质瘤和瘤内各结构精度高,与专家手动分割的结果接近。结论 实验结果表明,构建的多模态3D CNN能够准确的分割MRI多模态图像脑部胶质瘤及瘤内各结构,具有重要的临床意义。 相似文献
10.
CT成像是检测新冠感染(COVID-19)病灶区域的重要手段之一,但需要专业的放射科医生判断且工作量较大。为了解决磨玻璃结节(GGO)以及肺部实变两种病变统一分割问题,在U-Net网络模型中加入改进的三重注意力模块,提高病灶特征的显著性,细化病灶的边缘特征,增加对小区域病灶的识别度,辅助医生判断。该方法构建的深度分割网络模型在COVID-19分割数据集中进行实验,得到的Sensitivity, Specificity, Dice, mIou分别为86.57%,99.33%,81.64%,88.23%。分割效果在这个模型中能得到更良好的体现。 相似文献
11.
《广西师范学院学报(自然科学版)》2016,(1)
脑部MRI图像自动分割是计算机技术运用于医学上的一个典型工作,脑部图像分割技术对于人类研究脑部疾病具有重要意义。应用广泛的有图像分割方法,如阈值法、区域增长法、聚类法等。在脑部MRI图像分割中,这些方法都没有图谱法具有更为实际的医学研究与临床价值。该文综述了MR图像不均匀性校正方法及近几年来有关脑部MRI分割方法的研究新进展以及对分割效果的评价方法。认为:基于脑部MRI分割算法趋向于发展全自动、快速、准确的分割方法,并综合多种方法的优点,取长补短,在算法中引入图像的空间结构、纹理信息,有望在新理论技术上和新工具方面有所突破。 相似文献
12.
颈动脉狭窄是导致脑卒中的最主要病因,颈动脉三维重建图像能直观显示其狭窄程度.采用形态学运算,二值化分割颈动脉MR图像,提出颈动脉图像层间插值算法,实现不同临床样本间的数据配准,将T1、T2加权图像中颈动脉血管壁从周围组织中清晰分离出来,利用Mimics重建颈动脉血管的三维结构. 相似文献
13.
针对泡沫图像的高度复杂性导致其难以被准确分割的难题,本文提出了一种新的I-Attention U-Net网络用于泡沫图像分割.该算法以U-Net网络作为主干网络,使用Inception模块替换第一卷积池化层来提取泡沫图像的多尺度、多层次浅层特征信息;引入金字塔池化模块,通过对不同尺度的特征图求和来提升分割效果;并对自注意力门控单元进行改进,使注意力单元更适合于浮选泡沫图像的分割,强化深层特征的重要性并对不同尺寸的泡沫边界进行强化学习.研究结果表明:本文所提出算法的Jaccard系数为91.73%,Dice系数为95.66%.与同类其他分割算法结果相比,Jaccard系数及Dice系数分别提高了1.59%、0.88%.该模型能够较好地对锌浮选泡沫图像进行分割,解决欠分割与过分割的问题,为后续的泡沫特征提取奠定基础.此外,该方法检测时间和模型参数少,具备可以部署在工业现场计算机的能力,有一定的实际应用价值. 相似文献
14.
灰度不均匀性常出现在医学图像中,给图像分割问题带来很大困扰.为了提高鲁棒性,可在分割模型中引入各种先验知识,例如形状和灰度分布信息.而传统的引入先验知识的分割算法,如神经网络算法,仍存在许多问题,包括数据计算量大和边界不连续等.为了解决这些问题,提出了一种基于水平集理论的分割算法.利用局部区域的灰度信息定义能量函数,然后根据能量函数的最小化机制引导水平集曲线进化并最终收敛到目标边界.在仿真实验中,将局域化的水平集算法与传统的自组织映射神经网络算法进行比较.结果表明,所得到的算法在鲁棒去噪和目标边界的连续性方面效果更佳. 相似文献
15.
医学图像分割是图像处理的重要环节,而细胞核分割结果是病理学家进行癌症分类和评级的重要依据,提高其分割的准确率一直是研究的热点。但由于同器官的不同细胞核存在形态可能不一样、细胞之间相互重叠、细胞边界不清楚等现象,导致细胞核图像难以准确分割。为提高相互接触和重叠细胞核分割的准确性和精确率,本研究提出一种新型的细胞核分割网络模型。该模型首先是对原始细胞图进行ZCA白化预处理,并基于经典的U-Net网络结构,通过U-Net和ResNet残差模块进行训练,使用Batch Normalization方法实现数据归一化处理,解决训练过程中梯度震荡问题。在MoNuSeg和ISBI2018Cell两个数据集上的实验结果表明,本研究所提出的模型的分割准确率较高,分割出的细胞没有出现细胞核大面积粘连的现象,细胞核轮廓更加清晰。本研究所提的分割网络基于经典的U-Net网络结构,通过构造ResNet残差模块实现对细胞核上下文特征的提取,同时在残差模块使用Batch Normalization使得梯度的传输更加便捷,减少了训练时间,而且在分割相互接触的细胞核时,具有精确定位和准确分割的能力,是一种有效的细胞核分割方法。 相似文献
16.
17.
针对传送带矿石图像中矿石粘连和边缘模糊造成的分割不准确问题,提出了一种基于U-Net和Res_UNet模型的传送带矿石图像分割方法.该方法首先将待分割图像经过灰度化、中值滤波和自适应直方图均衡化处理后,利用预训练的U-Net模型提取图像轮廓;然后,将图像轮廓二值化后,利用预训练的Res_UNet模型进行轮廓优化;最后,利用OpenCV得到分割结果.与基于形态学重建的分水岭算法和NUR法分别对10张测试图进行实验比较,结果表明,所提出的利用深度学习实现矿石轮廓检测和优化方法分割的结果更加准确,证明了其对传送带矿石图像分割的有效性. 相似文献
18.