首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
基于欧拉-拉格朗日、离散单元法理论,利用EDEM-FLUENT耦合方法,考虑了气相对颗粒的相互作用,以及颗粒与颗粒之间的碰撞,对滚筒冷渣机六棱形冷渣管料床中灰渣颗粒轴向扩散进行了数值模拟分析,得出了灰渣颗粒在填充度25%,颗粒滚落状态下的动态休止角θd=29°,安装倾斜角3°工况下,轴向扩散运动随滚筒转速n(5 r/min ~ 10 r/min)、颗粒粒径d(1.5 mm ~ 3.5 mm)的变化规律。实验结果表明:当粒径一定时,轴向扩散系数随着转速n的增大而增大,相比5 r/min转速,10 r/min转速下颗粒轴向扩散系数增大了23.6%;当滚筒转速一定时,轴向扩散系数随着粒径的增大而增大。粒径d从1.5 mm增加到3 mm及3.5 mm时,轴向扩散系数分别增大了3倍和7.06倍。轴向扩散系数越大,颗粒轴向运动就越剧烈,滚筒出力越强,炉渣处理效率越高。  相似文献   

2.
针对颗粒在回转滚筒内混合这一共性问题,建立了颗粒运动的离散元模型及"颗粒接触数"标定法,从混合形态、混合指数、直刮板结构几个方面研究了物料的混合特性。结果表明:颗粒A-A或B-B接触数随时间逐渐减小,变化规律类似于衰减震荡曲线,A-B接触数随时间逐渐增大,变化规律类似于指数函数形式;直刮板增混作用明显,存在最优的刮板高度和数量,在滚筒转速为15 r/min、颗粒粒径为3 mm、填充率为33%条件下,10块高度比为0.6的直刮板对混合促进效果最大,比无刮板时混合速率系数增大约24%。  相似文献   

3.
为研究偏心搅拌时的固-液悬浮特性,采用PC-6D浓度测量仪研究了Rushton桨偏心搅拌槽内石英砂-水两相体系的悬浮过程,分析了偏心搅拌时的固-液悬浮特征,测量了不同偏心率时的固相浓度分布和功率消耗,并与中心搅拌进行了对比.结果发现:偏心搅拌时的临界悬浮转速和功率消耗均随偏心率的增大而增大,偏心率较小时的临界悬浮转速比中心搅拌时低,相同搅拌转速时偏心搅拌的功率消耗比中心搅拌时大;偏心搅拌时的固相浓度分布比中心搅拌均匀,偏心率为0.2时的悬浮效果最好,此时的临界悬浮转速约为中心搅拌时的80%,能节省功率消耗.  相似文献   

4.
通过实验方法研究了不同转速下丝状散体颗粒在滚筒内的运动状态,并采用烟丝作为实验材料,测量其在滚筒内的停留时间.实验结果表明:滚筒烘丝机转速越大,颗粒在抄板的提升作用下运动越剧烈,做圆周运动的时间越少,从而导致颗粒在滚筒内的总停留时间越短.在该实验基础上利用"虚拟颗粒团"方法对滚筒内散体颗粒的运动过程进行数值建模,得到的模拟结果与实验数据吻合较好.因此,采用此数学模型模拟不同滚筒倾角条件下丝状颗粒在滚筒内的运动过程,模拟结果显示:滚筒倾角越大,丝状散体颗粒在抄板和滚筒壁面的综合作用下,纵向运动时间越少,颗粒在滚筒内停留时间越短.  相似文献   

5.
采用液固两相流的数值模拟方法,针对卧式双轴搅拌器的均质混合,运用FLUENT软件结合非结构化网格划分、Eulefian多相流模型、RNG k-ε湍流模型及离散相模型,在非稳态条件下数值模拟卧式双轴搅拌槽的速度分布、压力分布、湍流强度及颗粒轨迹线的规律,分析不同工况对均质混合效果的影响,并获得搅拌轴扭矩及流场冲刷磨损率.在此基础上,分析搅拌功率、搅拌效率和叶片冲刷磨损率的变化规律.研究结果表明:搅拌功率随粒径增大而减小,随体积分数的增大而增大,与转速近似线性关系;当转速高时,搅拌效率高,且粒径和颗粒体积分数对搅拌效率影响小;当颗粒体积分数大时,磨损量大;当粒径增大时,磨损率先增大后趋于平稳.  相似文献   

6.
开展了某一国Ⅵ直喷汽油机三元催化转化器(TWC)前、TWC后、汽油机颗粒捕集器(GPF)后3个位置的颗粒物采样及微观形貌研究,分析了发动机工况、TWC、GPF对国Ⅵ直喷汽油机尾气颗粒数量、粒径分布、微观形貌的影响。结果表明,该直喷汽油机尾气颗粒数量排放整体上呈单峰分布,低转速小负荷工况下,粒径<23 nm的颗粒数量较高。随着发动机转速和负荷的增大,峰值粒径向大粒径方向移动。直喷汽油机尾气颗粒物由“核?壳”结构基本碳粒子堆积形成,呈链状、枝状、簇状等结构;负荷增大,颗粒物尺寸略有增大,基本碳粒子重叠度增强,分形维数增大;转速增大,颗粒物尺寸减小,基本碳粒子重叠度减弱,分形维数减小。随着排气输运的进行,颗粒数量逐渐降低;TWC不影响颗粒的粒径分布形态,颗粒数量净化效率41.6%~94.2%,对<23 nm的小粒径颗粒净化效果较好,低转速小负荷工况的颗粒数量净化效率较高;GPF的颗粒数量净化效率约80%,23~100 nm颗粒数量净化效率较高,对粒径<10 nm的颗粒净化作用不大。TWC和GPF不影响颗粒物结构形式, TWC和GPF后颗粒物基本碳粒子重叠度减弱,分形维数减小。  相似文献   

7.
对热电制冷液冷服内纳米流体自然循环的换热特性进行了实验研究.实验采用不同种类的、粒径在20~100 nm范围内的纳米流体,使其在填充有高孔隙率泡沫金属的换热器中被热电制冷元件降温,利用自然循环流动至与换热器连接的盘管中,在盘管中吸收热量,温度升高后再次进入换热器中冷却.将同样粒径和体积分数的Ti O2,Cu O,Cu等颗粒制成的纳米流体与去离子水在特定工况下进行对比实验,结果表明,采用纳米流体可显著增强循环的换热性能,其中Cu纳米流体的强化换热效果最好,制冷功率输出能力比同工况下的去离子水提升25%,系统最大制冷功率输出能力提升95%.针对不同尺寸和浓度的Ti O2纳米流体,研究了其粒径大小、体积分数等对循环过程的流动和换热产生的影响,结果表明,增大纳米颗粒的粒径和体积分数,在一定程度上可以增强其换热性能,但也会带来因团聚堆积增强而产生的堵塞和结冰等问题.  相似文献   

8.
采用分子动力学方法模拟了受到边界振动的粒径呈幂律分布的颗粒气体中的颗粒分离行为特性.研究发现当系统受到振动时,模拟区域出现温度梯度,系统出现颗粒分离现象,所有的颗粒都会朝着温度低的区域移动,且大颗粒比小颗粒更趋向于聚集在低温区域;系统大颗粒和小颗粒间的粒径差越大,系统的颗粒分离行为越显著.同时,系统的子区域中的局域粒径分布函数仍然为幂律分布.  相似文献   

9.
通过考察水与表面活性剂的摩尔比(R),TEOS的量、氨水的量及包壳次数对基于Triton X - 100/环已烷/正已醇/水反相微乳液体系制备二氧化硅纳米颗粒尺寸的影响,开展了基于反相微乳液法的尺寸可控性二氧化硅纳米颗粒制备研究.结果表明:在其他参数都恒定的情况下,通过改变微乳液体系中上述某一组分的量,可以在一定程度上实现二氧化硅纳米颗粒的尺寸可控性合成.首先,水与表面活性剂的摩尔比(R)对二氧化硅纳米颗粒的尺寸影响最大,随着R值的增大,颗粒的粒径逐渐减小,当R值达到18时,二氧化硅纳米颗粒的形貌变得不再是很规则的球形结构,并且分散性降低,团聚现象明显;其次是氨水的量,随着氨水量的增多,颗粒的粒径先减小,之后不再发生明显变化;另外随着包壳次数的增多,颗粒的粒径随之增大,并且颗粒之间的分散性也有所提高;但是TEOS的量对颗粒粒径的影响不明显.  相似文献   

10.
稻草及木屑与煤二元混合颗粒的流化特性   总被引:1,自引:0,他引:1  
为获得生物质与煤混合颗粒的最小流化速度(Umf)与混合颗粒流化时的分离特性,借助高速摄像仪、压力在线采集系统等对稻草及木屑两种生物质与煤二元混合颗粒的流化特性进行了研究。当生物质掺混比(质量分数)低于5%时,二元混合颗粒的流化性能与煤粉单独流化接近,甚至在一定程度上提高了流化质量;但随着生物质颗粒与煤颗粒的粒径差异增大以及生物质掺混比增大到10%左右,二元混合颗粒流化质量变差,逐渐出现分离和穿孔等现象。随着混合颗粒中生物质掺混比的增大,最小流化速度随之增加。基于实验研究结果,提出了用于预测生物质与煤二元混合颗粒最小流化速度的改进模型。另外研究还表明随着生物质掺混比的增大,混合颗粒离析程度加剧,床层出现不稳定流化现象。  相似文献   

11.
针对旋流器无法对粒径在10 μm左右的固相颗粒进行有效分离的问题,提出了一种过滤分离与旋流分离相结合的新型结构,并对内部流体速度场、压力场的变化和空气柱的稳定性进行了数值分析,对过滤介质的过滤通量和分离效率进行了实验研究.发现在相同操作参数和结构参数下新型旋流分离一体机具有更稳定的内部流场,内部速度、压力降更大,当粒径大于5 μm后旋流分离一体机的分离效率迅速提高,在10 μm 左右的固相颗粒的分离效率能够达到65%~85%,而实验所用普通旋流器的分离效率在60%以下.  相似文献   

12.
以往的氢氧化铝颗粒尺寸对其附聚动力学影响的研究结果不甚相同,本文对此进行了进一步的研究。基于附聚过程的颗粒二元碰撞模型,以粒径ri-1,ri,ri 1的3种颗粒为作用物,按照穷举法,建立了附聚的物理模型。依照附聚模型给出了氢氧化铝颗粒的附聚速率方程,根据差分法求出了附聚的宏观速率,建立了不同粒径颗粒的附聚速率方程组。计算的动力学结果表明:等径颗粒的附聚速率常数要大于不等径颗粒的附聚速率常数;对于等粒径的颗粒,其中粒径最小的颗粒附聚速率常数最大,随着粒径增加,颗粒的附聚速率常数逐渐减少;对于不等径颗粒,其粒径相差越大,附聚的速率常数越小;动力学的计算结果与实验结果能够很好地吻合。  相似文献   

13.
超声波作用下微粒凝集过程参数的研究   总被引:3,自引:1,他引:2  
针对利用超声波去除或分离悬浮液中微小颗粒(以下简称微粒)过程和复合材料生产过程悬浮液中的微粒凝聚过程参数进行了分析研究·利用数值模拟预测了微粒达到最终平衡状态时所需要的凝聚时间和凝聚位置·将数值模拟结果与其解析解进行了比较,表明数值计算结果是可靠的,并且数值模拟很好地弥补了解析解的不足·  相似文献   

14.
为了进一步优化烧结式吸液芯的结构,提高热管的热传导性能与效率,研究了外径分别为5、6、8mm和吸液芯厚度为0.5~0.6 mm的热管的传热特性,结果发现:铜粉粒径分布比较集中时,如果其平均粒径增大,吸液芯的孔隙率和热管的极限传输功率(MHTP)均会增大,热管的冷凝端温差及总热阻则略微减小;不同粒径范围的铜粉混合时,热管的冷凝端温差及总热阻在不同外径的热管内的变化规律不同;含70%小粒径铜粉的烧结式热管的MHTP最小,且粒径越小MHTP越低;含70%大粒径铜粉的烧结式热管的MHTP仅次于全部为大粒径铜粉的烧结式热管的MHTP;铜粉粒径的范围越小,热管的性能越优,平均粒径为(165±15)μm的铜粉适合于制作薄壁烧结式热管.  相似文献   

15.
研究了颗粒尺寸差异和密度差异对二元物料在回转窑内混合的影响. 采用离散单元法建立颗粒物料的运动模型,模拟滚落运动模式下二元物料在回转窑内的径向混合过程;通过颗粒接触数定义混合程度评价指数,结合Hong的渗流与凝聚竞争理论分析颗粒体积比σ和密度比η对二元物料混合程度的影响. 结果表明:增大体积比σ会增强渗流作用,增大密度比η会增强凝聚作用,无论渗流或凝聚占据主导作用,均会导致物料在混合过程中产生径向分离,使混合程度降低;对σ与η进行配置后,可以使渗流与凝聚两种机理彼此平衡,达到物料混合均匀的目的;物料的渗流-凝聚平衡曲线中,σ与η呈幂函数关系.  相似文献   

16.
作为固液及固气两相流中固体颗粒运动的基础性研究,以旋转锥形分离机为模型,水为介质,对不同尺寸的玻璃粒子在容器内的回转流场中的运动建立了动力学模型,并进行两相流在容器内实施连续流动过程中粒子运动全过程的数值解析与可视化实验.动力学模型中除考虑了传统的力外,还考虑了假想质量力、Basset力、Saffman扬力及压力梯度力等多种力的作用.计算中考虑了锥形容器锥角、流体垂直流速及不同粒子直径等参数.结果发现了容器高度、锥角、垂直水流速度、容器旋转速度以及粒子径与粒子分离时间的相互关系.计算结果得到可视化实验结果验证,并证明了其数学模型的正确性.  相似文献   

17.
气固两相圆柱绕流背风区颗粒的运动特性   总被引:1,自引:0,他引:1  
为了考察颗粒在圆柱绕流背风区中的运动特性,采用欧拉双流体模型结合雷诺应力模型对气固两相微细颗粒圆柱绕流进行了数值模拟。比较了不同粒径固体颗粒在圆柱背风区中的速度和浓度分布,模拟结果表明:气流在绕圆柱流动后形成漩涡,漩涡湍流强度影响到微细颗粒在圆柱背风区的浓度分布与速度变化;气流对颗粒的漩涡卷吸作用及其自身惯性作用决定微细颗粒绕圆柱流动的形式,同时影响到颗粒在壁面附近的浓度分布;微细颗粒在圆柱背风区浓度随粒径的增加先增大后减小。  相似文献   

18.
为拓宽铁矿石来源,提高海砂品位以应用于长流程炼铁系统,对一种印尼海砂矿进行了球磨磁选实验,并利用X射线衍射(XRD)、扫描电镜(SEM)以及激光粒度分析(LPSA)等方法,研究了其在不同球磨阶段的微观解离特点、粒度与磁感应强度对精矿品位与回收率的影响以及细粒级下磁选过程中的受力机理.结果表明:球磨至一定阶段后,矿石粒度已较小,连生体基本以包裹体形式存在,很难继续解离,故此时继续降低矿石粒度对精矿品位的提升意义不大;另外,当矿石较细时,水阻力将成为磁选过程中的主要作用力,细粒级矿粒将不能到达磁鼓表面,故此时精矿回收率较低.  相似文献   

19.
使用光学显微镜观察棒状颗粒时,采集的样品图像中不可避免的会出现颗粒叠加交叉的情况,为准确测量棒状颗粒的形态参数,必须实现棒状交叉颗粒的分离。首先提取颗粒角点,再通过图像细化找到骨架交叉点,计算出颗粒角点到骨架交叉点的距离;依据设定的判断准则,筛选出棒状颗粒的轮廓交叉点,然后根据提出的棒状交叉颗粒分离算法,实现棒状交叉颗粒的分离。实验数据表明所提算法对棒状交叉颗粒分离的准确性大于95%。  相似文献   

20.
粒度分布对胶结砂岩力学特性的影响   总被引:1,自引:0,他引:1  
储层出砂过程中砂岩颗粒的离散与其细观结构性有密切关系。以胶结砂岩为研究对象,基于三维颗粒流数值模型(PFC3D)建立4种不同粒度分布的数值模型,模拟剪切过程的砂岩力学响应,研究不同粒度分布的砂岩体应力比、体应变、配位数和黏结破坏与轴应变之间的关系。结果表明:粒度分布对砂岩力学特性的影响较大,仅基于随机方法产生颗粒建立的数值模型不能完全代表实际砂岩的物理结构。须根据实测的砂岩粒度分布建立三维数值模型,才能准确描述储层砂岩的力学特性。粒径越小,连接的颗粒越少,自由度越大,开采中成为离散颗粒的可能性越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号