首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The early stages of murine B-cell differentiation are characterized by a series of immunoglobulin gene rearrangements which are required for the assembly of heavy(H) and light(L)-chain variable regions from germline gene segments. Rearrangement at the heavy-chain locus is initiated first and consists of the joining of a diversity (DH) gene segment to a joining (JH) gene segment. This forms a DJH intermediate to which a variable (VH) gene segment is subsequently added. Light-chain gene rearrangement follows and consists of the joining of a VL gene segment to a JL gene segment: once a productive light-chain gene has been formed the cell initiates synthesis of surface immunoglobulin M (sIgM) receptors (reviewed in ref. 1). These receptors are clonally distributed and may undergo further diversification either by somatic mutation or possibly by continued recombinational events. Such recombinational events have been detected in the Ly 1+ B-cell lymphoma NFS-5, which has been shown to rearrange both lambda and H-chain genes subsequent to the formation of sIgM (mu kappa) molecules. Here we have analysed a rearrangement of the productive allele of NFS-5 and found that it is due to a novel recombination event between VH genes which results in the replacement of most or all of the coding sequence of the initial VHQ52 rearrangement by a germline VH7183 gene. Embedded in the VH coding sequence close to the site of the cross-over is the sequence 5' TACTGTG 3', which is identical to the signal heptamer found 5' of many DH gene segments. This embedded heptamer is conserved in over 70% of known VH genes. We suggest that this heptamer mediates VH gene replacement and may play an important part in the development of the antibody repertoire.  相似文献   

4.
M Reth  P Gehrmann  E Petrac  P Wiese 《Nature》1986,322(6082):840-842
During B-cell development, the VH genes of immunoglobulin heavy (H) chains are assembled from three different germline components: the variable (VH) segment, the diversity (D) segment and the joining (JH) segment. The joining between two segments involves the recognition of conserved nonamer-heptamer sequences bordering each segment, double-stranded cuts at the heptamer-segment border, and the re-ligation of the two segment ends which have frequently been modified by the deletion and addition of nucleotides. The flexibility of the joint increases VHDJH variability. However, it also results in many pre-B cells which do not produce immunoglobulin H chains and have non-functional VHDJH complexes carrying the VH and JH coding sequences in different reading frames. We show here that such 'null cells' are not dead-end products of the B-cell developmental pathway but can perform a novel VH to VHDJH joining using a 5' VH segment to replace the VH sequence of the VHDJ-H complex. This process can result in the generation of a VHDJ+H complex and the subsequent expression of an immunoglobulin heavy chain.  相似文献   

5.
S C Riley  E J Brock  W M Kuehl 《Nature》1981,289(5800):804-806
Pre-B cells, the first cells in the B-lymphocyte differentiation pathway which express immunoglobulin, have recently been shown to express cytoplasmic mu heavy chain (H) but not light chain (L). If, as is believed, pre-B cells are the precursors of immature B lymphocytes, which express surface IgM, the differentiation of pre-B cells to immature B lymphocytes must be accompanied by the expression of light chains. In this case, it should be possible for the progeny of a single pre-B cell to express a variety of light chains in association with the same heavy chain. We have tested this hypothesis by hybridizing a pre-B cell line 18-81 expressing only cytoplasmic mu chains with variant myeloma cells which do not express light chains. Hybridization of B-lymphoma cells with myeloma cells usually produces a hybrid with the phenotype of the more differentiated parent. In this case, the fusion resulted in the induction of light chain expression from the 18-81 genes and we have been able to demonstrate that independent hybrids express different light chains, in accordance with the hypothesis that a pre-B cell committed to expression of a single mu heavy chain can generate progeny expressing different slight chains.  相似文献   

6.
Approximately 20% of patients with acute lymphocytic leukaemia (ALL) have leukaemic blasts with features of pre-B cells which are the recently characterized precursors of B lymphocytes in normal development (for a review, see ref. 2). Pre-B cells isolated from normal bone marrow or fetal liver, and malignant cells from patients with pre-B cell leukaemia, are rapidly dividing lymphoid cells that contain cytoplasmic immunoglobulin mu heavy chains, but have no detectable surface immunoglobulin. The resemblance of immunoglobulin-containing ALL cells to normal precursors of B lymphocytes and their availability in relatively pure preparations allowed us to explore them as models of early stages in the differentiation of the B-lymphocyte line. We report here observations on the occurrence of intermediate pre-B/B-cell phenotypes, immunoglobulin isotype switching and the asynchrony of immunoglobulin heavy and light chain expression in 30 cases of ALL and 3 cases of chronic myelogenous leukaemia in lymphoblastic crisis (CML-BC).  相似文献   

7.
B lymphocytes originate from pluripotential haematopoietic stem cells and differentiate into immunoglobulin (Ig)-producing cells. B-cell lineage differentiation is accompanied by two types of immunoglobulin gene rearrangements--rearrangement of V, D and J gene segments to create a functional V gene and rearrangement of CH genes for heavy-chain switching. These results, however, have been obtained mainly by analysis of immunoglobulin gene organization of myeloma cells. Baltimore and his colleagues have established Abelson murine leukaemia virus (A-MuLV)-transformed cell lines and found a few lines capable of carrying out kappa-gene rearrangement or undergoing isotype switching during in vitro culture. To study early B-cell lineage differentiation events, we have now also established A-MuLV-transformed cell lines which are capable of differentiating from mu- to mu+ and of undergoing continuing rearrangement of heavy-chain genes in culture. Analysis of immunoglobulin gene organization of these transformed cells revealed that mu- cells have already undergone DNA rearrangements involving JH segments but an additional rearrangement of JH segments is required for initiation of mu-chain synthesis. Southern blot analysis of the DNA and two-dimensional gel electrophoresis of intracytoplasmic mu-chain show that mu-chain diversity with respect to antigen specificity may be generated during this second rearrangement process. As no rearrangement of light-chain genes takes place in these cells, this implies that light-chain gene rearrangement requires some further change, or a different enzyme.  相似文献   

8.
应用RT-PCR技术,从两株分泌具有中和活性的抗A型产气荚膜酸菌α毒素单克隆抗体(McAb)的杂交瘤细胞株2E3和1A8中,分别扩增出抗体VH和VL基因,用Linker(Gly4Ser)3基因,将VH和VL基因连接成ScFv基因2E3-ScFv和1A8-ScFv,并将其克隆至pGEM-T载体中,经核苷酸序列分析证实,VH和VL基因以及Linker基因拼接正确,2E3-ScFv基因全长为729bp,经计算机分析,VH和VL基因均为新发现的基因序列,符合功能性重排的鼠抗体可燮区基因特征,2E3-ScFv的VH和VL基因分别属于鼠免疫球蛋白重链Ⅱ(B)和轻链kⅢ家簇;而1A8-ScFv的VH和VL基因分别属于鼠免疫球蛋白重链Ⅱ(A)和轻链кⅥ家簇。  相似文献   

9.
N Sakaguchi  F Melchers 《Nature》1986,324(6097):579-582
The development from stem cells to pre-B cells, B lymphocytes and, finally, plasma cells and memory cells proceeds through various stages which have been defined by the genomic context in which immunoglobulin (Ig) heavy (H) and light (L) chain gene segments are found, as well as by their state of expression. They have also been identified by surface marker analysis and susceptibility to various stimuli regulating growth and differentiation. We have searched for genes that are expressed at given stages in the B-lymphocyte development pathway and which might function to control this development at various stages. A complementary DNA sequence called pZ183 was found in a library constructed from messenger RNA of the murine pre-B lymphoma cell line 70Z/3 which is selectively expressed in pre-B cells. Here we report the nucleotide sequence of a cDNA clone (pZ183-1) containing 0.7 kilobases (kb) of the pZ183 gene. Part of this sequence shows strong homology to constant (C) and joining (J) region sequences of lambda 1 L chains. Our findings define a new immunoglobulin L-chain-related locus, which we call lambda 5, that is selectively transcribed in pre-B lymphocytes.  相似文献   

10.
Immunoglobulin heavy chain binding protein   总被引:23,自引:0,他引:23  
I G Haas  M Wabl 《Nature》1983,306(5941):387-389
Pre-B lymphocytes, and hybridomas derived from them, synthesize immunoglobulin heavy (IgH) chain in the absence of light (L) chain. In the Abelson virus transformed line 18-81, which is representative of the pre-B cell stage, we observed that at least some of the H-chains are bound to a protein other than L-chain. Here we show that the protein (which we term immunoglobulin heavy-chain binding protein, BiP) binds non-covalently to free IgH, but not to IgH associated with IgL.  相似文献   

11.
The finding that the diversity (D) and joining (JH) but not the variable (VH) DNA segments of mouse immunoglobulin heavy-chain genes are joined in the DNA of some cloned cytolytic T cells, led to identification and sequencing of three different D DNA segments. Two segments identified on the embryo DNA carry on both the 5' and 3' sides two sets of characteristic sequences separated by a 12-base pair spacer, which have been implicated as recognition signals for a recombinase. The third segment, identified in a form joined with a JHDNA segment in a T cell, carries the recognition signal on the 5' side. These results support the 12/23-base pair model for somatic generation of immunoglobulin V genes, and rule out the possibility that the cytolytic T cells use assembled VH, D and JH sequences to encode their antigen receptors.  相似文献   

12.
B A Pollok  J F Kearney  M Vakil  R P Perry 《Nature》1984,311(5984):376-379
One mechanism which generates diversity in immunoglobulin variable (V) regions is flexibility in the site of recombination among the constituent genetic elements. Within a specific antibody family (that is, a particular VH-VL combination), variability in V-D-J rearrangement not only leads to sequence diversity at the boundary of the juxtaposed genes, but also enables the total length of the third complementarity-determining region (CDR-3) of the heavy chain to be conserved. We demonstrate here that the junctional diversity inherent in rearranged immunoglobulin genes can have consequences for the biology of the immune system. Sequence analysis of the expressed immunoglobulin genes of idiotypically variant as opposed to conventional B lymphocytes of a dominant antibody family showed that the variant B cells undergo a novel D-JH joining event such that an extra amino acid is inserted into the heavy chain CDR-3. The unique D-region conformation possessed by the variant B cells accounts for previous observations which showed that variant and conventional B cells could be differentially regulated in vivo by an autologous set of idiotope-specific B lymphocytes. Our findings indicate that D-region structure can determine the expression of regulatory idiotopes and suggest that the conservation of heavy-chain CDR-3 length within an antibody family may reflect regulatory as well as functional constraints.  相似文献   

13.
14.
A novel cell surface molecule on early B-lineage cells   总被引:20,自引:0,他引:20  
M D Cooper  D Mulvaney  A Coutinho  P A Cazenave 《Nature》1986,321(6070):616-618
B cells and their antibody-secreting progeny represent one of several differentiation pathways that haematopoietic stem cells (HSC) may enter. Cells representing intermediate stages between HSC and B cells have been identified in mammalian haematopoietic tissues and studied intensively over the past decade. This population of early B-lineage cells, termed pre-B, is characterized by cellular proliferation and an orderly cascade of immunoglobulin gene rearrangements, a combination of events leading to the generation of clonally diverse B cells which then migrate to peripheral lymphoid tissues. It remains to be determined what elements determine the polyclonal growth of pre-B cells, how immunoglobulin gene rearrangements are regulated, and what happens to pre-B cells undergoing 'non-productive' immunoglobulin gene rearrangements. These issues could be resolved more easily if early B-lineage cells could be identified precisely and isolated. Here, we describe a cell surface glycoprotein that is selectively expressed by pre-B and newly formed B cells in murine haematopoietic tissues. The molecule, a homodimer formed by disulphide-linked chains of relative molecular mass (Mr) 140,000, is identified by a mouse monoclonal alloantibody called BP-1.  相似文献   

15.
R L O'Brien  R L Brinster  U Storb 《Nature》1987,326(6111):405-409
Initial studies of somatically acquired mutations in immunoglobulin V regions from hybridomas and myelomas that are not derived from joining aberrations, suggested a controlled and specific hypermutation process, because spontaneous mutation rates observed for other genes are extremely low. Some evidence for the idea that mutations are introduced during V-gene rearrangement came from the clustering of mutations at the joining sites, from the absence of mutations in unrearranged V genes and from the low level of mutations in only partially (D-J) rearranged nonproductive heavy-chain alleles. Another model in which mutations accumulate with each cell division, rather than being introduced all at once, was supported by the finding that immunoglobulin genes of hybridomas derived from a single mouse frequently had several mutations in common, and so might be derived from the same precursor cell whose daughters then accumulated additional mutations. But the common mutations in some cases could be due to as yet unidentified related germline genes, or could represent the effect of antigen selection for certain amino acids. To try to detect hypermutation in the absence of V-gene rearrangement, we isolated B lymphocytes with endogenous heavy-chain gene mutations from transgenic mice carrying pre-rearranged kappa-transgenes. We found that these kappa-transgenes were also somatically mutated. This and other observations indicated that: ongoing rearrangement is not required for mutation; there are signals for hypermutation in the transgenes; the mutations are found only in the variable region, so the constant region may not be a target; different transgene insertion sites are compatible with hypermutations and more than one transgene is expressed in the same cell.  相似文献   

16.
The transgenic mouse line M54 was generated by introducing a functionally-rearranged immunoglobulin mu heavy-chain gene into the germ line of a C57B1/6 inbred mouse. Previous examination of the antibodies produced by B-cell hybridomas derived from transgenic M54 mice showed that the presence of the mu transgene grossly altered the immunoglobulin repertoire of unimmunized animals, suggesting that these mice suffer from a serious immunoregulatory perturbation. Studies presented here introduce a new perspective on this functional defect. We show that the lymphoid tissues from these transgenic mice lack virtually all conventional bone-marrow-derived B cells, which constitute the predominant B-cell population in normal mice and which typically produce primary and secondary antibody responses to T-cell-dependent antigens. Moreover, the bone marrow from transgenic M54 mice is depleted of pre-B lymphocytes, indicating a serious defect in early B-cell lymphopoiesis. In contrast, CD5 (Ly-1) B cells, a second B-cell population displaying a characteristic set of cell surface markers which are derived from distinct precursors in the peritoneum, are represented at normal frequencies in these transgenic mice. Thus, the presence of the rearranged immunoglobulin heavy-chain transgene in M54 mice results in an unexpected selective developmental defect that impairs the development of bone-marrow-derived pre-B and B cells without affecting Ly-1 B cells.  相似文献   

17.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   

18.
D Kitamura  J Roes  R Kühn  K Rajewsky 《Nature》1991,350(6317):423-426
Of the various classes of antibodies that B lymphocytes can produce, class M (IgM) is the first to be expressed on the membrane of the developing cells. Pre-B cells, the precursors of B-lymphocytes, produce the heavy chain of IgM (mu chain), but not light chains. Recent data suggest that pre-B cells express mu chains on the membrane together with the 'surrogate' light chains lambda 5 and V pre B (refs 2-7). This complex could control pre-B-cell differentiation, in particular the rearrangement of the light-chain genes. We have now assessed the importance of the membrane form of the mu chain in B-cell development by generating mice lacking this chain. We disrupted one of the membrane exons of the gene encoding the mu-chain constant region by gene targeting in mouse embryonic stem cells. From these cells we derived mice heterozygous or homozygous for the mutation. B-cell development in the heterozygous mice seemed to be normal, but in homozygous animals B cells were absent, their development already being arrested at the stage of pre-B-cell maturation.  相似文献   

19.
Immunoglobulin heavy-chain switching in pre-B leukaemias   总被引:3,自引:0,他引:3  
H Kubagawa  M Mayumi  W M Crist  M D Cooper 《Nature》1983,301(5898):340-342
  相似文献   

20.
D Kitamura  K Rajewsky 《Nature》1992,356(6365):154-156
Burnet's clonal selection theory suggests that each B lymphocyte is committed to a single antibody specificity. This is achieved by a programme of somatic rearrangements of the gene segments encoding antibody variable (V) regions, in the course of B-cell development. Evidence from immunoglobulin-transgenic mice and immunoglobulin-gene-transfected transformed pre-B cells suggest that the membrane form of the immunoglobulin heavy (H) chain of class mu (microns), expressed from a rearranged H-chain (IgH) locus, may signal allelic exclusion of the homologous IgH locus in the cell and initiation of light (L)-chain gene rearrangement in the Ig kappa loci. We report here that targeted disruption of the membrane exon of the mu chain indeed results in the loss of H-chain allelic exclusion. But, some kappa chain gene rearrangement is still observed in the absence of micron expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号