首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
梁柱端板连接节点的端板强度计算模型   总被引:4,自引:0,他引:4  
建立了端板连接节点的有限元模型,并对模型进行了校正。对传统T形件连接强度模型作了修正,建立了端板连接节点的端板强度模型。提出了节点处梁端截面应力分布的两个假设,给出了端板屈服弯矩的近似计算方法。  相似文献   

2.
外伸端板节点有限元分析   总被引:1,自引:1,他引:0  
为考察外伸端板连接中不同端板厚度、螺栓直径、螺栓布置对节点受力性能以及端板强度的影响,采用有限元数值分析软件ANSYS建立半刚性端板连接节点模型进行非线性有限元分析.在建立模型和计算分析过程中考虑了弹塑性、大变形和接触问题.分析结果表明:端板厚度的变化对节点的初始转动刚度、极限转动能力以及抗弯承载力都有不同程度的影响;节点的初始转动刚度随着端板厚度的增加而增加,但节点的极限转动能力却随着端板厚度的增加而减小;设计中建议采用大螺栓、中等厚度的端板,同时螺栓应尽量布置在靠近梁翼缘一侧;传统的T形件方法计算端板强度,其计算结果偏低.  相似文献   

3.
为提高门式刚架端板连接点的可靠性,基于有限元法,建立了螺栓预拉力的三维有限元模型,分析门式刚架端板连接Γ形梁柱节点的力学性能,得到不同端板厚度和节点构造形式。结果表明:端板竖放比端板横放节点有更高的承载能力和刚度,但端板竖放时对螺栓的受力及强度要求较高,对连接处的整体强度不利,易造成螺栓强度不足,故建议采用端板横放节点构造形式。该研究为门式钢架端板的工程应用提供了参考。  相似文献   

4.
利用有限元数值分析软件ANSYS建立半刚性端板节点模型进行非线性有限元分析.在建立模型和计算分析过程中考虑了弹塑性、大变形和接触问题,有限元分析结果与试验结果吻合良好.根据梁腹板、端板厚度和螺栓对端板强度影响,对传统计算端板强度的T形件方法进行了修正.分析结果表明:根据端板的破坏模式应采用相应修正系数来考虑上述因素的影响.该方法对端板强度的设计有一定的参考价值.  相似文献   

5.
为了解高强钢端板连接节点的受力性能和失效机理,对Q690和Q960高强钢端板连接节点进行足尺模型试验研究和有限元模拟分析,并将试验结果与采用欧洲规范EC3的计算结果、有限元分析结果进行对比.研究结果表明:节点的失效模式为端板破坏和螺栓断裂;高强钢端板连接节点具有良好的转动能力;EC3中用于普通钢端板连接节点承载能力计算和失效模式预测的组件法可直接用于高强钢端板连接节点,但转动刚度的计算公式并不适用,且EC3关于保障节点转动能力的相关要求对高强钢端板连接节点偏于保守.本文建立的有限元模型可准确模拟该端板连接节点的弯矩-转角关系和失效模式.  相似文献   

6.
为研究高强钢端板连接节点在火灾作用下的力学性能,对7个梁柱端板连接节点在550℃的火灾高温下进行足尺试验研究.依据试验结果,采用通用有限元件ABAQUS建立高强钢端板连接节点有限元模型,从网格划分、单元种类选择、接触定义、分析步设置以及失效准则的确定等方面详细介绍建立模型过程,并得到高强钢端板连接节点在火灾下和常温下的弯矩-转角关系曲线、破坏模式以及端板的应力分布和屈服线模式.同时,将有限元分析结果同试验研究结果进行对比校验,结果显示,该有限元模型具有足够精确性.  相似文献   

7.
对H型钢梁与矩形钢管柱平齐式端板单向螺栓连接节点承载性能进行试验和理论分析研究.通过对3种不同形式的平齐式端板单向螺栓连接节点进行单调静力加载试验,获得了各试件的破坏模式和弯矩-转角曲线,讨论了螺栓破坏、端板破坏、柱壁破坏等3种破坏模式.基于试验现象提出了节点螺栓力理论分布模式,并给出了螺栓强度控制的节点抗弯承载力计算公式.通过将端板和钢梁腹板等效为T形件,得出了端板屈服控制的节点抗弯承载力计算公式.基于试验现象并利用屈服线理论提出了钢管柱壁的屈服线模型,运用虚功原理得出由柱壁强度控制的节点抗弯承载力计算公式.研究表明螺栓、端板、柱壁间的相对强弱关系直接影响节点的破坏模式,理论计算值与试验相比结果偏安全.给出了H型钢梁与矩形钢管柱平齐式端板单向螺栓连接节点的设计准则和建议.  相似文献   

8.
外伸端板梁柱连接的滞回性能试验   总被引:1,自引:0,他引:1  
通过对循环荷载作用下的外伸端板节点连接性能的试验,分析了外伸端板连接的滞回性能。试验结果表明:外伸端板连接具有良好的延性和耗能能力,节点的转角都超过了0.03rad;端板刚度(主要是端板厚度)和螺栓直径是影响节点滞回性能和极限承载力的决定因素。  相似文献   

9.
波纹腹板H型钢梁柱端板螺栓连接节点抗弯性能   总被引:1,自引:0,他引:1  
提出了一种波纹腹板H型钢梁与普通H型钢柱采用端板螺栓连接的节点构造.基于高强螺栓抗拉性能的刚性端板模型和T形连接件理论,提出波纹腹板H型钢梁柱端板螺栓连接节点的设计方法.进行了2个波纹腹板H型钢梁柱端板螺栓连接节点的静力试验,并使用商用有限元分析软件ABAQUS建立节点的有限元模型,将设计弯矩下的高强螺栓最大拉力的试验结果与有限元计算结果进行对比,证明了高强螺栓拉力计算公式的可靠性;通过对比设计弯矩和有限元计算的端板屈服弯矩,证明了端板厚度计算公式的合理性.  相似文献   

10.
钢框架梁柱外伸端板连接节点的半刚性结构力学模型,是一种用已知节点尺寸来预测其M-θ关系的非线性数学模型, 模型中的主要参数是节点初始转动刚度和极限承载力.文章给出了考虑外伸端板半刚性节点连接的线性化模型初始刚度的计算公式,推导了半刚性连接在荷载作用下的内力计算公式,讨论了半刚性连接对框架内力的影响.  相似文献   

11.
为了解端板厚度、螺栓直径、螺栓预紧力、柱翼缘厚度、端板钢材强度及过火温度等因素对高强钢端板连接节点力学性能的影响,对薄高强钢端板替代厚普通钢端板这一设计理念进行深入探讨,采用ABAQUS对高强钢端板连接节点进行有限元分析.有限元分析结果表明:端板厚度增加,节点的初始转动刚度和极限承载力提高,转动能力下降;螺栓直径增加,节点的初始转动刚度、极限承载力及转动能力均提高;螺栓预紧力增加,节点的初始转动刚度提高,极限承载力和转动能力基本不变;柱翼缘厚度增加,节点的初始转动刚度提高,极限承载力基本不变,转动能力略有减小;端板钢材强度增加,节点的初始刚度基本不变,极限承载力提高,转动能力在端板钢材强度不超过Q460时基本不变,高于Q460后显著减小;与采用较厚普通钢端板的节点相比,采用薄高强钢端板的节点常温下和火灾后均可达到相似的承载力、相近甚至更高的转动能力;端板连接节点火灾后可能发生失效模式转变,甚至由延性转变为脆性的失效模式.  相似文献   

12.
针对当前端板连接节点的半刚性,采用通用的有限元程序,对门式刚架外伸式端板连接的5种典型的节点进行了受力及变形分析,探讨了有加劲肋的外伸式端板连接节点的变形机理.针对不同构造的节点,分析了节点的最大等效应力?节点转角及节点刚度,探讨了此类节点半刚性的原因,发现端板连接节点的变形主要是由节点域腹板剪切变形和节点下部柱身变形引起的.通过合理的构造措施,可使该类节点的刚度明显提高.  相似文献   

13.
目的 提出一种全栓接蜂窝梁柱端板连接空间节点并探究节点强弱轴向蜂窝梁成铰机制的影响因素及梁铰发展规律,为工程应用提供参考。方法 在验证ABAQUS模型精确度良好的基础上,建立36个蜂窝梁柱端板连接空间节点模型,分析连接刚度(端板厚度)、蜂窝梁节点转动贡献率(开孔率、开孔位置)对节点力学性能及破坏形式的影响,基于等效T型件法及组件法分析了弱轴向节点组件的节点转动贡献率。结果 柱弱轴向弯曲变形及环端板对柱翼缘的约束使强轴向端板的抗弯承载能力降低,连接刚度及蜂窝梁节点转动贡献率足够时,强弱轴向最终均可形成梁铰机制,并具备良好的承载能力。结论 强弱轴向端板厚度分别宜大于tcf(柱翼缘厚度)与0.75 tcf,建议强弱轴向蜂窝梁开孔率分别为60%~65%和65%~70%,蜂窝梁节点转动贡献率可作为节点破坏模式的识别指标,并给出相应的计算方法。  相似文献   

14.
研究了带支撑节点板钢框架梁柱节点的抗弯性能.在ABAQUS有限元分析软件中采用C3D8I单元分别建立了6个由端板或双腹板角钢连接的钢框架梁柱节点模型,其中,2个不带支撑节点板,4个带支撑节点板.研究在正、负弯矩作用下支撑节点板对钢框架梁柱节点承载能力、转动刚度的影响,并分析了增设底角钢、端板外伸等措施对带支撑节点板钢框架梁柱节点抗弯性能的影响.分析结果表明,支撑节点板使钢框架梁柱刚度提高,具有了半刚性,明显提高了节点的抗弯性能,增设底角钢和端板外伸有助于提高带支撑节点板钢框架梁柱节点抗弯性能.  相似文献   

15.
端板连接是门式钢架和多层钢框架中常用的节点形式,而目前少有针对不锈钢结构端板连接节点的相关研究.本文对4种类型的螺栓(镀锌高强度螺栓10.9级、8.8级,奥氏体不锈钢螺栓A4-70、A4-80)和不同端板厚度的不锈钢结构外伸式端板连接节点进行循环荷载下的破坏试验,研究其节点破坏形态、承载力及延性,并与有限元计算结果进行对比.试验结果表明:不锈钢螺栓端板连接节点的滞回曲线呈Z形,且其耗能系数仅为镀锌高强度螺栓端板节点的40%,;当端板较薄时,节点的抗震性能均有显著提高;通过有限元分析与试验结果的比较,验证了有限元模型的正确性.研究结果表明,所有试件的滞回曲线均具有不同程度的滑移捏缩现象,不锈钢螺栓端板连接节点、端板越薄时捏缩现象越明显,因此需从设计上加以改进,同时不锈钢摩擦面的处理工艺也需进一步开发,以提高不锈钢面的抗滑移系数.  相似文献   

16.
为了讨论加劲肋对连接性能的影响,对带端板加劲肋的外伸端板连接的梁柱节点进行了循环荷载作用下试验研究.分析了端板、端板加劲肋、梁柱翼缘和腹板在荷载作用下的应力情况,确定了这种连接的受力性能及破坏模式,分析此类连接的滞回曲线、连接初始刚度、承载能力和延性特征.试验结果表明,加劲肋是提高节点性能的一项有效措施.  相似文献   

17.
为研究端板与柱间灌浆层对端板连接RCS节点抗震性能的影响,以端板与柱间灌浆层厚度、灌浆层强度以及螺栓预拉力为主要研究参数,进行了4个端板连接RCS节点试件的低周反复加载试验.基于试验数据,研究了各试件的破坏形态、滞回性能、承载能力、刚度退化规律、延性、耗能能力和变形组成等.试验结果表明:强柱弱梁型端板连接RCS节点的破坏形态为梁铰破坏机制,灌浆层出现压碎脱落现象,整个受力过程中钢梁端板、灌浆层和柱面之间连接紧密,未出现滑移现象,端板和RCS节点之间的连接和传力可靠,表现出良好的受力性能.各试件滞回曲线呈梭形,梁端塑性铰充分耗散能量,具有较好的抗震性能;反复荷载作用下端板与柱间灌浆层的损伤累积导致节点延性和耗能能力降低,其降低幅度随灌浆层损伤程度增加而增大;各试件刚度退化规律基本一致,灌浆层的损伤累积导致刚度退化加剧;节点的变形主要来自钢梁的变形,在整个加载过程中,各试件端板连接变形较小,在极限位移角时,试件RCS1、RCS3和RCS4由端板连接变形引起的位移所占比例分别为1.5%、1.8%和2.7%.各试件弯矩-转角关系曲线呈现出明显的非线性特征,试件RCS1~RCS4按刚度分类均属于半刚接节点,节点初始转动刚度随灌浆层厚度增加而提高,但提高幅度有限.  相似文献   

18.
端板连接高强度螺栓受力特性试验研究   总被引:9,自引:0,他引:9  
为研究钢结构梁柱外伸式端板连接中摩擦型高强度螺栓的受力特性,对5个不同构造的试件进行了试验研究,并且采取特殊方法测量了螺栓的拉力分布状态,研究了端板厚度、螺栓直径等因素对螺栓受力特性的影响.试验结果表明:受拉区螺栓同时承受拉力和弯矩,螺栓与端板的相对强弱决定了螺栓承受弯矩的大小,不同的节点计算模型则适用于不同的节点构造.最后根据试验结果对外伸式端板连接节点提出了设计建议.  相似文献   

19.
采用稳态火灾试验方法,对7个梁柱平齐式端板连接节点在550℃的火灾高温下开展足尺试验研究,得到此类节点在火灾下的受力性能以及失效机理.节点试件包括4个高强钢端板连接节点和3个普通钢端板连接节点,所研究参数为端板材料和端板厚度.为对比分析,同时对上述7个节点试件在常温下的相应力学性能进行试验研究.此外,将试验结果同现行欧洲钢结构设计规范Eurocode3中相应条文进行对比分析.研究表明,无论在常温下还是在火灾高温下,同普通钢端板连接节点相比,采用相对较薄的高强钢端板可在提高节点转动能力的同时不影响其抗弯承载力,从而确保结构整体的安全性能.  相似文献   

20.
对1个Q690和2个Q960高强钢外伸式端板连接节点进行高温550℃下的足尺模型试验研究和有限元模拟分析,并将试验结果与采用欧洲现行钢结构设计规范EN 1993-1-8的计算结果及有限元分析结果进行对比.结果表明,550℃时,Q690和Q960高强钢端板连接节点的承载力分别为常温时的45%和46%,初始转动刚度为常温时的57%和65%,但转动能力分别为常温时的1.43倍和1.66倍.EN 1993-1-8中基于普通钢端板连接节点常温力学性能所提出的组件法可直接用于预测高强钢端板连接节点火灾下的失效模式和承载能力,但初始转动刚度的计算公式并不适用,且采用EN 1993-1-8关于保障节点转动能力的相关要求对高强钢端板连接节点进行抗火设计偏于保守.有限元模型可准确模拟该端板连接节点火灾下的弯矩转角关系和失效模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号