共查询到20条相似文献,搜索用时 8 毫秒
1.
利用色集合事先分配法及具体的染色给出了mC7的最优点可区别Ⅰ-全染色以及最优点可区别Ⅵ-全染色,进而确定了图mC7的点可区别Ⅰ-全色数及点可区别Ⅵ-全色数。结论表明VDITC猜想和VDVITC猜想对图mC7成立。 相似文献
2.
通过构造以色集合和空集为元素的矩阵,利用色集合事先分配法及具体的染色方案,给出图mC8的最优点可区别Ⅰ-全染色和最优点可区别Ⅵ-全染色,进而确定图mC8的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数.结果表明,VDITC猜想和VDVITC猜想对图mC8成立. 相似文献
3.
通过构造以色集合和空集为元素的矩阵,利用色集合事先分配法及构造具体染色的方法,解决了图mC15的最优点可区别Ⅰ-全染色及最优点可区别Ⅵ-全染色问题,得到了图mC15的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数.结果表明,点可区别Ⅰ-全染色猜想和点可区别Ⅵ-全染色猜想对图mC15成立. 相似文献
4.
图G的一个一般全染色是指使用若干颜色对图G的全部顶点及边的一个分配,如果任意两个相邻点和两条相邻边染以不同颜色,则称为图G的Ⅰ-全染色;如果任意两条相邻边染以不同的颜色,则称为图G的Ⅵ-全染色.图G的一个Ⅰ-全染色(或Ⅵ-全染色)f,若对?u,v∈V(G),u≠v,都有C(u)≠C(v),其中C(x)表示在f下点x的颜... 相似文献
5.
通过构造以色集合和空集为元素的矩阵,利用色集合事先分配法及构造具体染色的方法,证明mC14的最优点可区别Ⅰ-全染色及最优点可区别Ⅵ-全染色,确定图mC14的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数。结论表明,点可区别Ⅰ-全染色猜想和点可区别Ⅵ-全染色猜想对图mC14成立。 相似文献
6.
设f为简单图G的一个一般全染色(即若干种颜色对图G的全部顶点及边的一个分配),如果任意两个相邻点染以不同颜色且任意两条相邻边染以不同的颜色,则称为图G的Ⅰ-全染色;如果任意两条相邻边染以不同的颜色,则称为图G的Ⅵ-全染色.用C(x)表示在f下点x的颜色以及与x关联的边的色所构成的集合(非多重集).对图G的一个Ⅰ-全染色(分别地,Ⅵ-全染色)f,一旦?u,v∈V(G),u≠v,就有C(u)≠C(v),则f称为图G的点可区别Ⅰ-全染色(或点可区别Ⅵ-全染色),简称为VDIT染色(分别地,VDVIT染色).令χ~Ⅰ_(vt)(G)=min{k|G存在k-VDIT染色},称χ~Ⅰ_(vt)(G)为图G的点可区别Ⅰ-全色数.令χ~Ⅵ_(vt)(G)=min{k|G存在k-VDVIT染色},称χ~Ⅵ_(vt)(G)为图G的点可区别Ⅵ-全色数.利用构造具体染色的方法,讨论了联图mC_3∨nC_3和mC_4∨nC_4的点可区别Ⅰ-全染色和点可区别Ⅵ-全染色,并给出了联图mC_3∨nC_3和mC_4∨nC_4的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数. 相似文献
7.
图G的一个邻点可区别Ⅰ-均匀全染色是指对图G的邻点可区别的一个Ⅰ-全染色f,若f还满足||T_i|-|T_j||≤1(i≠j),其中T_i=V_i∪E_i={v|v∈V(G),f(v)=i}∪{e|e∈E(G),f(e)=i},则称f为图G的一个邻点可区别Ⅰ-均匀全染色,而图G的邻点可区别Ⅰ-均匀全染色中所用的最少颜色数称为图G的邻点可区别Ⅰ-均匀全色数.通过函数构造法,得到了M(Pn)、M(Cn)、M(Sn)的邻点可区别Ⅰ-均匀全色数,并且满足猜想. 相似文献
8.
图G的Ⅰ-全染色是指若干种颜色对图G的顶点和边的一个分配,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.在图G的一个Ⅰ-全染色下,G的任意一个点的色集合是指该点的颜色以及与该点相关联的全体边的颜色构成的集合.图G的一个Ⅰ-全染色称为是邻点可区别的,如果任意两个相邻点的色集合不相等.对一个图G进行邻点可区别... 相似文献
9.
考虑m个长为7的圈点不交的并mC7的点可区别全染色问题.通过构造以色集合为元素的矩阵,利用色集合事先分配法及递归法确定染色,得出了mC_7的点可区别全色数的确切值.结果表明VDTC猜想对图mC_7成立. 相似文献
10.
设G为简单图.设f是图G的一个一般全染色,若对图G的任意两个不同的顶点u、v,有C(u)≠C(v),则称f为图G的一般点可区别全染色(简记为GVDTC).对图G进行一般点可区别全染色所需要的最少颜色数称为图G的一般点可区别全色数.将一类含有4-圈的单圈图悬挂边的染色按从小到大的顺序排列,探讨了它的一般点可区别全染色,确定了它具有一般点可区别全染色,并得到了它的一般点可区别全色数. 相似文献
11.
利用色集事先分配法, 借助于矩阵构造具体染色及递归法的方法, 研究图的点可区别全染色问题, 给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值, 即“如果k-14<4m≤k4, m≥2, k≥6, 则χvt(mK4)=k”. 验证了VDTC猜想对mK4成立. 相似文献
12.
邻点可区别全染色是在全染色的基础上,要求相邻顶点的色集合互不相同.通过设计染色方案,给出轮与圈的联图WmVCn的邻点可区别全色数. 相似文献
13.
所谓图的D(β)-点可区别全染色是指图G的一个正常全染色且使得距离不大于β的任意2点有不同的色集合.文献[2]讨论了图的距离等于2和3的点可区别全染色,文献[3]讨论了图的距离等于4的点可区别全染色.本文主要讨论了圈的D(5)-点可区别的全染色. 相似文献
14.
【目的】为了确定联图mC_(2t)∨nC_(2t)点可区别Ⅰ-全染色和点可区别Ⅵ-全染色。【方法】如果?u,v∈V(G)且u,v相邻,就有f(u)≠f(v)并且?e_1,e_2∈E(G)且e_1,e_2相邻,就有f(e_1)≠f(e_2),则称f为图G的Ⅰ-全染色;如果?e_1,e_2∈E(G)且e_1,e_2相邻,就有f(e_1)≠f(e_2),则称f为图G的Ⅵ-全染色。令C(u)={f(u)}∪{f(uv)∣uv∈E(G)}是u的色集合(非多重集)。对图G的一个Ⅰ-全染色(分别地,Ⅵ-全染色)f,一旦?u,v∈V(G),u≠v,就有C(u)≠C(v),则f为图G的点可区别的Ⅰ-全染色(或点可区别Ⅵ-全染色),简称为VDIT染色(分别地,VDVIT染色)。对图G进行点可区别Ⅰ-全染色所需要最少的颜色的数目记为χ_(vt)~i(G),称χ_(vt)~i(G)为图G的点可区别Ⅰ-全色数。对图G进行点可区别Ⅵ-全染色所需要最少的颜色的数目记为χ_(vt)~(vi)(G)。称χ_(vt)~(vi)(G)为图G的点可区别Ⅵ-全色数。本文利用构造具体染色的方法。【结果】构造了mC_(2t)∨nC_(2t),其中t≥3的最优点可区别Ⅰ-全染色和点可区别Ⅵ-全染色,给出了联图mC_(2t)∨nC_(2t),其中t≥3的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数。【结论】VDITC猜想及VDVITC猜想对联图mC_(2t)∨nC_(2t)是成立的。 相似文献
15.
邻点可区别全染色是在全染色的基础上,要求相邻顶点的色集合互不相同.通过设计染色方案,给出轮与圈的联图Wm∨Cn的邻点可区别全色数. 相似文献
16.
严谦泰 《科技导报(北京)》2010,28(21):78-81
邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同。设G(V,E)为一个简单图,f为G的一个k-邻点可区别全染色,若f满足||Vi∪Ei|-|Vj∪Ej||≤1(i≠j),其中,Vi∪Ei={v|f(v)=i}∪{e|f(e)=i},记C(i)=Vi∪Ei,则称f为G的k-均匀邻点可区别全染色,简记为k-EAVDTC,并称χeat(G)=min{k|G存在k-均匀邻点可区别全染色}为G的均匀邻点可区别全染色数。本文给出了路、圈、风车图K t 3、图Dm,4和齿轮图■n的均匀邻点可区别全染色,以及它们的均匀邻点可区别全色数的确切值。 相似文献
17.
若一个正常全染色其相邻顶点的色集不同时,就称之为邻点可区别全染色,邻点可区别全染色所用颜色的最小数称为邻点可区别全色数.本文研究了联图Wm∨Pm(n≥4)的邻点可区别全色数。 相似文献
18.
给出了最小度至少是2的图G的k重Mycielski图M~k(G)(其中k为正整数)的点可区别全色数的上界. 相似文献
19.
给出了圈的阶数至少为4的单圈图的邻点可区别全色数.如果E(G[VΔ])=,则χat(G)=Δ(G) 1,否则,χat(G)=Δ(G) 2,其中Δ(G)表示图G的最大度. 相似文献
20.
孟献青 《内蒙古师范大学学报(自然科学版)》2015,(1):4-7,11
根据圈的立方图的性质,利用穷染、置换的方法,研究了立方图C3n的邻点可区别全染色及一般邻点可区别全染色.通过设计染色方案,给出了立方图C3n的邻点可区别全色数及一般邻点可区别全色数指标,且色数均可取到下界. 相似文献