首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
用尿素水解均匀沉淀法制备一系列不同的Mg2+与Al3+摩尔比的镁铝水滑石(Mg/Al-LDHs),并研究了镁铝水滑石的焙烧产物(LDO)对阴离子染料茜素黄GG的吸附特征。分别考察了不同镁铝摩尔比的LDO、LDO投加量、反应温度、染料的初始浓度等因素对LDO吸附阴离子染料茜素黄GG的影响。结果表明,对于150mL 30mg/L的茜素黄GG模拟废水溶液,镁铝摩尔比为1:2的镁铝水滑石,投加量为30mg,在25℃下反应150min,去除率可达到100%。三次回收重复利用的LDO对茜素黄的去除率仍为76%以上,LDO是一种良好的环保吸附材料。  相似文献   

2.
焙烧温度对镁铝水滑石焙烧产物物性影响的研究   总被引:7,自引:0,他引:7  
用共沉淀法制备了Mg-Al水滑石(Mg/Al摩尔比为3)样品,经焙烧得Mg-Al-O混合氧化物,运用X射线衍射、热重-差热分析、比表面积和孔容测定等方法对其进行了初步表征,考察了焙烧温度对焙烧产物物性的影响.结果表明,以水滑石为前体的Mg-Al-O样品具有良好的热稳定性,经过800℃焙烧,其BET表面积仍有120m2/g,样品的孔径分布集中在18nm左右且不受焙烧温度的影响.  相似文献   

3.
制备Dawson型磷钼钒杂多酸,用傅里叶变换红外光谱和X射线衍射进行表征.以环戊醇为反应底物,考察了催化剂用量、反应温度、反应时间和30%H2O2用量对氧化反应的影响及催化剂的重复使用.实验结果表明,杂多酸催化H2O2氧化环戊醇合成环戊酮的较佳条件为:H8[P2Mo16V2O62]:环戊醇:H2O2物质的量比为1:3826:8956、反应时间6h、反应温度80℃,环戊酮产率为85.75%,催化剂循环使用7次,环戊酮的产率在82%以上.在此条件下,催化氧化了苯甲醇、正丁醇、环己醇、异丙醇和仲丁醇合成苯甲醛、正丁醛、环己酮、丙酮和2-丁酮,其产率分别为 87.62%、35.64%、70.24 %、76.34 %和80.41 %.  相似文献   

4.
2—戊基—环戊酮—2—甲酸乙酯是有机精细化工合成的重要中间体,以环戊酮—2—甲酸乙酯为原料,四丁基溴化铵(TBAB)为相转移催化剂,固体碳酸钾为碱,在固—液相转移催化条件下与正溴戊烷进行C—烷基化反应制得。其反应最佳条件为:COOEt:n-C_5H_(11)Br:K_2CO_3:TBAB(mol)=1:1.2:1.3:0.1以甲苯为溶剂,于80℃反应2小时,产率可达82%~84%。  相似文献   

5.
以水滑石为前躯体,经煅烧制备了具有不同Mg/Al摩尔比的镁铝复合氧化物,借助TG和XRD对水滑石前躯体和氧化物分别进行了结构表征.然后,以这些复合氧化物为催化剂,在反应釜中催化氨基甲酸甲酯和甲醇合成了碳酸二甲酯(DMC).催化测试结果表明,当起始Mg/Al摩尔比为3时,催化效果最好.同时,优化了反应温度、反应时间和催化剂用量等反应条件对反应的影响.条件试验结果表明,当反应温度为190oC,反应时间为9 h,催化剂用量为0.5g时,DMC收率可以达到27.1%.催化重复性实验表明,所开发的镁铝复合氧化物催化剂,催化重复使用稳定性较好.  相似文献   

6.
以30%H2O2溶液为氧化剂,以六配位水和三配位水的铋钨杂多酸四丁基铵盐([(C4H9)4N]10[(MⅡ(H2O)3)2(WO2)2(BiW9O33)2]和[(C4H9)4N]12[(MⅡ(H2O))3(BiW9O33)2](M=Ni,Mn,Co))为催化剂,催化了环己烯环氧化反应,探索了杂多酸催化剂中配位水的数量对催化剂性能的影响.结果表明:H2O2(30%)与环己烯的物质的量比为3∶1,反应温度为80℃,反应时间为6 h,六配位水的铋钨杂多酸四丁基铵盐具有更高的催化活性.底物环己烯的转化率为58.9%,产物环氧环己烷的选择性大于等于99%.同时还对杂多酸催化环氧化环己烯的机理做了初步的探讨.  相似文献   

7.
以稀土氧化物(CeO2、La2O3)为助剂对Ni/类水滑石催化剂进行改性,用于CH4三自热重整反应,旨在改善催化剂的活性和稳定性。以共沉淀法先制得铈(镧)掺杂的镁铝类水滑石(LDHs),焙烧后再以浸渍法负载镍活性组分得到Ni/LDHs前驱体,再焙烧得到NiO/CeO2(La2O3)-MgO-Al2O3催化剂。用ICP-AES进行Ni、Mg、Al元素分析,BET法测试催化剂比表面积,XRD表征催化剂物相,H2-TPR表征催化剂活性中心。考察了原料气组成为n(CH4)∶n(CO2)∶n(H2O)∶n(O2)=1∶0.5∶1.8∶0.1时催化剂在750℃、0.1MPa条件下CH4三自热催化重整的稳定性及积炭性能。结果表明,制得的Ni/CeO2(La2O3)-MgO-Al2O3催化剂中,Ni组分以NiO形式存在于催化剂表面,能降低催化剂还原活化温度;在催化剂中掺杂CeO2(La2O3)对其活性有一定程度的调控作用,且能够很好地改善催化剂的抗积碳性能;当Ni的质量分数为10%、Al与Mg的质量比为1.7时,催化活性较好,750℃、0.1 MPa时,CH4转化率达到92.3%,CO2转化率达到98.3%;反应100 h后,Ni/CeO2(La2O3)-MgO-Al2O3催化剂上的CH4转化率仍可维持在75%以上。  相似文献   

8.
以Al(OH)_3为铝源,用分步浸渍-焙烧法制备介孔钨铝复合氧化物负载铂催化剂。在连续流动固定床反应器中,考察催化剂催化甘油氢解制备1,3-丙二醇(1,3-PDO)的催化性能与稳定性。通过N2物理吸附、X线衍射(XRD)方法表征反应前后催化剂的结构。结果表明:介孔钨铝复合氧化物负载铂催化剂的平均孔径为16 nm,催化剂在甘油氢解反应中呈现良好的催化活性。催化剂焙烧温度、反应温度、甘油质量空速(WHSV)及甘油水溶液浓度等因素变化对1,3-丙二醇产率及甘油转化率有较大影响。在160℃、4 MPa、60%甘油水溶液进料、甘油质量空速为0.25 h~(-1)、H_2与甘油摩尔比为100∶1的条件下,介孔钨铝复合氧化物负载铂催化剂催化甘油氢解反应,甘油转化率为54.1%,1,3-丙二醇的产率与选择性分别为26.2%与50.3%。催化剂长期稳定性良好。  相似文献   

9.
采用低过饱和共沉淀法合成了物质的量比为2,3,4的镁铁水滑石,XRD分析表明它们晶形好,纯度高,以其焙烧产物为催化剂研究了乙酸正丁酯催化合成的各种影响因素.结果表明:3种焙烧产物都可以催化乙酸正丁酯反应,其中2MgFe效果最好,3MgFe次之,4MgFe第三;以2MgFe为催化剂,在最佳合成条件为酸醇摩尔比为1:2,催化剂用量0.5g,反应时间为2h,催化产率为67.O%.  相似文献   

10.
采用水热法制备ZnMnAl-CO3类水滑石,再经焙烧制备纳米锌锰铝三元复合金属氧化物光催化剂.采用X射线衍射表征了催化剂的组成结构.在模拟太阳光下,通过光催化降解甲基橙和还原CO2来考察样品的光催化活性,并探讨论了各种金属离子比、焙烧前后及焙烧温度对光催化活性的影响.结果表明:当锌、锰和铝的摩尔比为3:1:1、400℃焙烧时所得的样品,具有很强的CO2还原活性,明显优于对甲基橙的降解.当NaOH与Na2SO3的质量比为1.6:5.04时,催化剂加入量为1g/L,反应6h所得CO2的主要还原产物甲醇最多,峰面积达89.7%,说明该样品对减排温室气体具有潜在的应用前景.  相似文献   

11.
固定Cu/Mg/Al物质的量比15∶60∶25,采用共沉淀法制备Cu/Mg/Al水滑石前驱体,经过不同温度焙烧制得一系列用于纤维素在高温高压甲醇中转移加氢液化的催化剂.采用XRD、TG/DTG、BET、H2-TPR和FT-IR等表征手段研究了焙烧温度对Cu/Mg/Al水滑石衍生催化剂性能的影响.结果表明水滑石经过450 ℃焙烧后,热分解较为完全,CuO与载体MgO之间相互作用良好,具有优异的稳定结构,且CuO易还原,催化性能好.当焙烧温度450 ℃,催化剂结晶效果差,稳定性差,导致催化剂活性低.而焙烧温度450 ℃时,催化剂中CuO因为高温发生团聚,并且高温(≥650 ℃)焙烧后起隔离分散作用的尖晶石MgAl2O4稳定性较差,在参与纤维素液化的高温高压反应过程中会发生分解,导致CuO发生二次团聚;此外催化剂还会发生烧结现象使催化剂活性降低.  相似文献   

12.
采用共沉淀法制备固体碱催化剂MgO/ZrO2,并以此催化大豆油与甲醇酯交换反应制备生物柴油。考察MgO含量和催化剂焙烧温度对催化剂活性的影响,以及优化酯交换反应的工艺条件,结果表明:在MgO质量分数为15%、焙烧温度700℃、反应时间3 h、反应温度60℃,醇油物质的量比12∶1和催化剂用量为大豆油质量的3%的条件下,生物柴油的产率可以达到82%以上。该催化剂对酯交换反应具有较高的催化活性和较好的稳定性。  相似文献   

13.
用改进的柠檬酸络合法制备了CuO//La2O3/γ-Al2O3催化剂,并通过XRD、NH3-TPD技术对样品进行了表征,探索其对乙二胺(ED)和1,2-丙二醇(PG)为原料合成2-甲基吡嗪(2-MP)反应的催化活性。分别考察了催化剂不同金属配比、煅烧温度以及反应温度、气体空速等对催化剂活性的影响。结果表明:当铜铝摩尔比为4∶6,煅烧温度为700℃时催化剂的催化性能最好;在原料液中1,2-丙二醇、乙二胺和水的摩尔比为1∶1∶2、反应温度为320℃、气体空速(GHSV)1 815 h-1的条件下,1,2-丙二醇的转化率为100%,2-甲基吡嗪的收率为82.7%。  相似文献   

14.
目的 研究稀土掺杂纳米固体超强酸SO42-/SnO2-Eu2 O3催化剂对合成十六烷酸乙酯的影响,确定最佳反应条件.方法 利用溶胶-凝胶法及改性技术制备稀土掺杂纳米固体超强酸SO42-/SnO2-Eu2O3催化剂,并用单因素法研究催化剂的最适宜制备条件;采用正交试验来确定十六烷酸乙酯催化合成的最佳条件.同时利用熔点、红外光谱等手段对产品进行物性和结构表征.结果 Eu2O3的添加量为1.5%(指Eu2O3占SO42--/SnO2的摩尔分数),硫酸浸渍液的浓度为2.0 mol/L,焙烧温度为500℃,焙烧时间为2.5h条件下,制备出的SO42--/SnO2-Eu2O3催化剂具有最好的催化活性.通过正交实验确定的酯化反应优化条件是:在80~85℃的回流反应温度下,醇酸摩尔比为5.0:1.0,催化剂用量为反应物总质量的5.0%,反应时间4.0h,十六烷酸乙酯的酯化率可达97.0%以上.各种分析结果一致表明,催化合成所得之物与十六烷酸乙酯标准相符合.结论 该催化刑具有良好的催化活性和重复使用性,反应条件温和,方法简便,酯化率高,具有很好的工业化应用价值.  相似文献   

15.
杂多化合物催化合成尿囊素的研究   总被引:2,自引:0,他引:2  
以乙二醛和尿素为原料 ,过氧化氢为氧化剂 ,采用具有酸碱催化和氧化还原催化双功能的K15H2 [Ce( P2 W15Mo2 O61) 2 ]杂多化合物为催化剂 ,系统地研究了尿囊素的合成条件 .其最佳工艺条件 :乙二醛的氧化温度为 3~ 8℃ ,尿囊素的生成温度是 75℃ ,乙二醛与过氧化氢的物质的量比为1 .0∶ 1 .1 ,催化剂与乙二醛的物质的量比为 2 .9× 1 0 -5∶ 1 .0 ,反应时间 8h,尿囊素收率为2 7.2 2 % ,采用红外光谱验证产品结构  相似文献   

16.
固体碱催化剂上碳酸甲乙酯的洁净合成   总被引:3,自引:0,他引:3  
制备了氧化镁、氧化钙及镁铝复合金属氧化物3种固体碱催化剂,对不同温度下3种催化剂上碳酸二甲酯与碳酸二乙酯酯交换合成碳酸甲乙酯反应的催化性能进行了考察,并推测了固体碱催化剂上碳酸二甲酯与碳酸二乙酯酯交换合成碳酸甲乙酯的反应机理.结果表明,镁铝复合金属氧化物对该反应具有最优的催化活性,在回流温度下、反应时间为4h、碳酸二甲酯与碳酸二乙酯摩尔比为1:1的条件下,碳酸甲乙酯收率可达45.8%.采用X射线衍射,CO2程序升温脱附对催化剂进行表征.X射线衍射谱图显示镁铝复合金属氧化物中以MgO、Al2O3晶相为主,同时存在少量的MgAl2O4物种.CO2程序升温脱附曲线表明酯交换反应主要在弱碱活性住上进行.  相似文献   

17.
为了有效去除富氢重整气体中少量的CO,将4Ni-2Ru/ZrO_2双金属催化剂均匀涂布到微通道反应器中,运用CO选择性甲烷化方法来净化CO.考察了焙烧温度、催化剂的涂布方法、CTAB/Zr摩尔比和空速对催化剂性能的影响.实验结果表明:CTAB/Zr的摩尔比为0.35、空速为14286h~(-1)、每次涂布催化剂浆液后350℃下焙烧时,所制备的催化剂表现出良好的低温活性,反应温度为260℃时可将CO的出口含量降低到0.0013%(体积分数);CTAB/Zr摩尔比为0.35、每次涂布浆液后350℃下焙烧的催化剂,适宜的空速范围为13000~20000h~(-1).  相似文献   

18.
目的合成2-(1-苯胺基)苯甲基-环己酮。方法在室温条件下,采用溶胶凝胶法合成H_4SiW_(12)O_(40)/SiO_2催化剂,高效催化环己酮、苯甲醛和苯胺的Mannich反应合成2-(1-苯胺基)苯甲基-环己酮。结果在n(苯甲醛):n(环己酮):n(苯胺)=1.0∶1.8∶1.8,反应温度为20℃,催化剂的用量占反应物料总质量的10%,反应时间为23h的最佳条件下,2-(1-苯胺基)苯甲基-环己酮的收率可达77.5%。结论 H_4SiW_(12)O_(40)/SiO_2是合成2-(1-苯胺基)苯甲基-环己酮的优良催化剂,整个反应体系具有条件温和、操作简单、对环境友好和催化剂可重复回收利用等优点。  相似文献   

19.
以镁-镧复合氧化物为固体碱催化剂,首次用于甲醛、丁醛间的羟醛缩合反应.GC、GC—MS分析发现:2,2-二羟甲基丁醛为主产物,2-乙基丙烯醛为最主要的副产物.筛选Mg—Al复合氧化物、MgO和Mg.La复合氧化物3种固体碱,发现Mg-La复合氧化物具有最佳催化活性.当甲醛和丁醛摩尔比为2.5-1时,在50℃反应4h,丁醛转化率为75%、DMB选择性为37%、DMB得率为28%.催化剂可以循环使用4次,没有明显失活,有利于降低反应成本,减少环境污染.  相似文献   

20.
非均相油脂酯交换法制备生物柴油工艺研究   总被引:4,自引:1,他引:3  
以沉淀法制备了以水滑石为前驱体的Mg—Al复合氧化物催化剂。该系列催化剂活性受制备条件,如加料方式、煅烧温度、Mg/Al比等因素影响。反应工艺条件也是影响生物柴油收率的重要因素。该工艺操作简单,催化剂可回收再生,整个过程无污染,是个环境友好的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号