首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对水下图像成像环境复杂常受偏色等因素干扰而影响后续图像分析的问题,提出一种基于多尺度特征与三重注意力多模态融合的深度卷积神经网络图像复原方法.首先,深度卷积神经网络在抽取图像空间特征的基础上,引入图像多尺度变换特征;其次,通过通道注意力、监督注意力和非局部注意力,挖掘图像特征的尺度间相关性、特征间相关性;最后,通过设计多模态特征融合机制,将上述两类特征有效融合.在公开的水下图像测试集上进行测试并与当前主流方法进行对比的实验结果表明,该方法在峰值信噪比、结构相似性等定量对比以及颜色、细节等定性对比上都优于对比方法.  相似文献   

2.
智慧司法是智慧城市建设中不可或缺的一部分,智慧司法中法律文书推荐体系的建设完善可以有效解决裁判尺度不统一,类案不同判和量刑不规范等问题.针对现阶段法律文书推荐体系不完善,存在对算力要求高、推荐准确率低和不能满足用户对诉讼请求服务的即时性需求问题,以及为了建立智慧司法中法律纠纷快速响应机制,文中提出了基于深度多模态与核密...  相似文献   

3.
针对基于视频的多模态情感分析中,通常在同一语义层次采用同一种注意力机制进行特征捕捉,而未能考虑模态间交互融合对情感分类的差异性,从而导致模态间融合特征提取不充分的问题,提出一种基于注意力机制的分层次交互融合多模态情感分析模型(hierarchical interactive fusion network based on attention mechanism, HFN-AM),采用双向门控循环单元捕获各模态内部的时间序列信息,使用基于门控的注意力机制和改进的自注意机制交互融合策略分别提取属于句子级和篇章级层次的不同特征,并进一步通过自适应权重分配模块判定各模态的情感贡献度,通过全连接层和Softmax层获得最终分类结果。在公开的CMU-MOSI和CMU-MOSEI数据集上的实验结果表明,所给出的分析模型在2个数据集上有效改善了情感分类的准确率和F1值。  相似文献   

4.
王风华 《科学技术与工程》2012,12(13):3134-3138
生物特征识别是信息技术领域的研究热点,其中多模态生物识别技术凭借更好的适用性、更高的安全性及更优的性能成为发展趋势。提出了一种融合虹膜特征和掌纹特征的多模态生物特征识别方法,该方法分别提取虹膜及掌纹特征,融合时不同于传统的匹配级融合,而是从特征级融合入手,采用并行特征融合策略,将两特征向量以复向量的形式进行融合,构成复向量空间,并利用酉距离进行匹配决策。实验结果表明此方法比单模生物特征方法在识别性能上有了明显改善,同时与传统匹配级融合策略相比,更有优势,识别效果更好。  相似文献   

5.
为了解决密集型视频描述(dense video captioning, DVC)任务中视频特征利用不充分,视频定位分段不准确,语义描述效果不丰富的问题,采用多模注意力机制的密集型视频描述方法,提取视频中的视觉特征、音频特征和语音特征.通过多模注意力机制,在编码器中计算不同模态视频帧特征间的关联程度,在解码器中计算描述词序列特征与编码器输出的多模态视频帧特征间的关联程度,并将编码器、解码器输出特征分别作用于视频定位分段模型和语义描述模型获得视频分段和分段描述.提出的方法在ActivityNet Captions数据集上进行了理论分析和实验验证,其中F1-score达到60.09,METEOR指标达到8.78.该方法有效提高了视频定位分段和语义描述的准确性.  相似文献   

6.
使用多模态数据建模可以有效地克服单一模态信息量不足的问题,大大提高模型的性能.但在量化神经网络模型置信度,尤其是对于多模态融合模型方面并没有很多进展.基于此,提出一种基于嵌入的方法,在嵌入空间中通过计算样本间的距离进行局部密度估计,进而计算模型的置信度分数.该方法具备可扩展性,不仅可以用于单一模态模型,还可以用于多模态...  相似文献   

7.
提出了一种基于文本模态指导的多模态层级自适应融合方法,以文本模态信息为指导实现多模态信息的层级自适应筛选及融合。首先,基于跨模态注意力机制实现两两模态之间的重要性信息表征;然后通过多模态自适应门控机制实现基于多模态重要信息的层级自适应融合;最后综合多模态特征和模态重要性信息实现多模态情感分析。在公共数据集MOSI和MOSEI上的实验结果表明:对比基线模型,本文所提方法在准确率与F1值方面分别提升了0.76%和0.7%。  相似文献   

8.
针对真实环境场景会同时出现多种事件导致场景分类准确率受到干扰信息影响的问题,本文提出了一种基于自注意力机制的多模态场景分类方法。首先,对音频进行特征提取并使用自注意力机制获得关注信息;然后,对视频进行分帧图片抽取,通过ResNet 50对图片特征进行提取;最后,将两个模态的特征进行拼接并再次使用自注意力机制对特征信息进行抓取分类。基于DCASE2021 Challenge Task 1B数据集的实验结果表明,与其基线系统、双模态信息简单拼接、视频辅助音频和音频辅助视频的分类系统相比,基于自注意力机制的多模态场景分类系统的准确率优于单模态互相辅助决策的场景分类系统。  相似文献   

9.
推荐系统在解决新闻准确呈现的问题上显示出巨大的潜力。现有的新闻推荐系统大多只考虑新闻文本,忽略了新闻图片与用户之间的关系。但新闻图片也是用户决定点击新闻的重要因素。本文将ViLBERT与多模态知识图注意力网络相结合,利用多模态知识提高新闻推荐系统的准确率,使用多模态图关注技术在多模态知识图关注网络上传播信息,将生成的图像和文本聚合嵌入推荐的表示,以有效地表征目标,缓解推荐系统中用户行为稀疏和冷启动的问题。通过在两个不同的真实中英文新闻数据集上进行了实验,结果表明本模型可以有效地提高新闻推荐的准确率。  相似文献   

10.
针对无人驾驶系统环境感知中的车辆检测精度低的问题,本文提出一种基于多模态特征融合的三维车辆检测算法.该算法通过毫米波雷达与摄像机联合标定,匹配2个传感器间的坐标关系并减小采样误差;采用统计滤波剔除毫米波雷达数据冗余点,减少离群点干扰;构造多模态特征融合模块,利用逐像素平均融合点云与图像信息;加入特征金字塔提取融合后的高...  相似文献   

11.
暴力事件检测是视频内容智能分析的一个常见任务,在互联网视频内容审查、影视作品分析、安防视频监控等领域有重要应用.面向视频中暴力检测任务,提出了一个包含关系网络和注意力机制的方法来融合视频中的多模态特征,该方法首先使用深度学习提取视频中多个模态特征,如音频特征、光流特征、视频帧特征,接着组合不同的模态特征,利用关系网络来建模多模态之间的关系;然后基于深度神经网络设计了多头注意力模块,学习多个不同的注意力权重来聚焦视频的不同方面,以生成区分力强的视频特征.该方法可以融合视频中多个模态,提高了暴力检测准确率.在公开数据集上训练和验证的实验结果表明,提出的多模态特征融合方法,与仅使用单模态数据的方法和现有多模态融合的方法相比,具有明显的优势,检测准确率分别提升了4.89%和1.66%.  相似文献   

12.
提出了一种基于知识图谱(KG)的用户多偏好(MPKG)推荐系统,从用户关系级、实体级和细粒度高阶用户三种不同的视角建模用户的偏好. 首先,将KG中关系向量组合,构建关系级意图,并通过独立性将不同意图之间的差异最大化,由关系级意图来指导学习关系级偏好;然后,根据用户交互实体的频率构建实体偏好图(EPG),并学习用户的实体级偏好;接着,分别使用关系级意图和实体级偏好来指导模型学习用户的表示;此外,还直接从KG中构建关系实体信息流,用于用户的表示,挖掘用户的高阶细粒度偏好. 在两个基准数据集上进行实验,实验结果验证了该方法的有效性和可行性.  相似文献   

13.
现有群组推荐方法在偏好融合时大多采用预定义策略,这种静态方法忽略了群组间用户的交互,难以对复杂的决策过程进行建模,从而影响推荐效果。针对该问题,提出了一种基于注意力机制的群组推荐方法,使用注意力机制获取群组中每个用户对其他用户的注意力权重,为群组选出一个决策者,以此来模拟群组中用户的交互,再根据用户的加权偏好为群组推荐项目。通过在CAMRa2011和MovieLens1M数据集上与基线方法的对比可知,该方法在命中率和归一化折扣累计增益方面都有较大提高。  相似文献   

14.
针对传统法条推荐方法知识利用不足的问题,结合预训练BERT模型,提出了一种基于司法领域法律条文知识驱动的法条推荐方法。首先基于BERT预训练模型对法条知识和案件描述分别进行表征,并基于双向LSTM对案件描述文本进行特征提取,然后基于注意力机制提取融合法条知识的案件描述文本特征,最终实现法条智能推荐。该方法在法研杯公共数据集上,法条推荐F1值达到0.88,结果表明,融合法条知识的BERT模型对法条推荐具有显著提升作用,并且可以有效地解决易混淆法条推荐问题。  相似文献   

15.
基于深度学习的场景文本检测普遍缺少特征级的精细化,导致原本设计良好的模型不能被充分利用,提出将特征融合和特征金字塔注意力模块应用到场景文本检测.将基本特征提取网络(PixelLink算法)得到的4个特征映射层以采样后加权叠加的方式进行特征融合,并将结果送给特征金字塔注意力模块.特征融合使各层级的特征信息相结合,从而增加...  相似文献   

16.
针对行人重识别中因遮挡、姿态变化使模型特征无法充分表达行人信息的问题,提出了基于注意力机制与多尺度特征融合的行人重识别方法.首先使用改进的骨干网络R-ResNet50提取图像特征;其次,抽取网络不同尺度的特征层嵌入注意力机制DANet,使模型更关注于重点信息;最后,对提取出的关键特征进行多尺度特征融合,实现特征间的优势...  相似文献   

17.
针对现有智能手机用户身份认证方法的不足,提出了一种自适配权重特征融合的持续身份认证方法。设计了一种卷积神经网络,对手机内置传感器(加速度计、陀螺仪、磁力计)获取的用户行为信息数据进行深度特征提取及融合。通过网络中3个子网络流分别提取3种传感器特征,在特征融合层加权融合,各特征的权值会在网络学习过程中根据不同特征的贡献度实现自适应分配。融合特征经过特征选择之后,使用单分类支持向量机进行用户分类认证。实验结果表明:该方法对不同用户身份认证获得的等错误率为1.20%,与现有其他认证方法相比具有更好的认证准确性。  相似文献   

18.
计算机辅助检测工具可以帮助医生减少在临床检查中漏检误检的情况,从而提高诊断准确度,同时减轻医生的劳动强度。针对超声胃肠镜检查中黏膜下肿瘤的定位与分类问题,提出了一种融合多尺度特征和子空间注意力的黏膜下肿瘤检测算法(MFSA-YOLOv7t)。首先,移除小目标预测头,在保证精度下使网络轻量化;然后,基于浅层特征提出多尺度特征融合模块,提取肿瘤细节信息;其次,改进上采样结构,在保留上层信息的同时增强感受野;最后,引入子空间位置注意力模块,捕获肿瘤的位置和边界特征,进一步提升黏膜下肿瘤的检测性能。实验表明,MFSA-YOLOv7t在平均精度均值、敏感度以及准确度上分别达到97.32%,96.99%和96.24%,相比YOLOv7-tiny算法检测性能有较大的提升,分别提高了2.39%,2.75%和2.59%。MFSA-YOLOv7t为医生在临床检查中的辅助诊断提供更加可靠的肿瘤类型参考,同时为黏膜下肿瘤的检测提供了一个新的思路和研究方向。  相似文献   

19.
在对中分辨率遥感图像进行场景分类时,传统的特征提取方法无法提取全面的特征,若使用卷积神经网络进行场景分类,同一大小的卷积核无法提取尺寸大小各异的地物特征,导致分类精度降低.为了提取不同尺寸的地物特征,提高分类精度,本文提出一种基于多尺度特征融合的中分辨率遥感场景分类算法.对传统的卷积神经网络进行改进以适应中分辨率遥感数据集,并在其基础上添加多尺度池化,将连接多层次的特征图谱输入到全连接层进行分类.实验表明,多层特征融合方法提取的特征信息比单层多尺度池化方法提取的特征信息更全面,分类效果更优.与其他的传统分类方法相比,本文方法获得更好的分类结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号