共查询到19条相似文献,搜索用时 59 毫秒
1.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。 相似文献
2.
为了能对时问序列充分建模,从混沌的慨念入手,将混沌与神经网络相结合,利用人工神经网络的拟合特性,提出了递归网络的混沌时间序列预测方法。给出了递归神经网络预测的基本理论、数学模型、及具体步骤,并通过由杜芬方程所产生的混沌时间序列对该神经网络进行了模拟实验。仿真结果表明,该方法远好于前馈网络的预测效果,其预测误差在10^-15的数量级上。 相似文献
3.
电力系统短期负荷预测在电力系统的调度和管理中起着重要的作用,已有研究证明了电力短期负荷是一非线性动力系统,负荷时间序列是混沌时间序列.文章讨论混沌时间序列的相空间重构技术,并以实际电网为例重构了该电力系统的相空间,最后采用Elman递归神经网络对负荷时间序列进行仿真预测,预测结果表明采用该方法能取得较好的预测效果. 相似文献
4.
利用相空间重构技术,并借助C-C方法和小数据量法从一维瓦斯涌出量时间序列中提取最大Lyapunov指数。结果表明:最大Lyapunov为0.28126的瓦斯浓度时间序列具有混沌特性,且在短期内,预测结果与实际情况符合较好。 相似文献
5.
适用于高必要嵌入维的混沌时间序列预测算法 总被引:7,自引:0,他引:7
针对现有的混沌时间序列预测算法--延迟坐标状态空间重构法不能对必要嵌入维较高的奇异吸引子进行有效预测问题,分析表明了高嵌入维时预测精度下降的原因在于 构空间的全局Lyapunov指数谱的变化。通过引入仿射变换,改善了高维重构空间的全局Lyapunov指数谱的性状,并由此给出了适用于高必要嵌入维的预测算法。仿真结果很好地支持了这一设想。 相似文献
6.
混沌时间序列局域线性预测方-法 总被引:12,自引:0,他引:12
在许多场合下,时间序列中的明显随机性可能是由于非线性确定性系统中混沌行为的缘故.混沌系统对初值的极端敏感性使之不可能对其时间序列进行长期预测,然而,利用混沌的确定性可以进行短期预期.混沌时间序列预测首先要重构相空间,接着再利用非线性函数逼近方法构造一个动力学系统模型.探讨了预测模型问题,并用数值分析的方法对Farmer&Sidorowich,Linsay和Navone&Ceccato提出的三种典型混沌时间序列局域线性预测方法进行了研究.实验结果表明,这三种方法的性能是相同的.本文的结果将平息人们对这三种方法优劣的争论,有利于在实际中选择合适的预测模型. 相似文献
7.
混沌时间序列的局域线性回归预测方法 总被引:6,自引:0,他引:6
混沌时间序列预测是80年代末发展起来的一种非线性预测新方法.它已在天气预报、经济预测、电力负荷预测、股市预测等方面得到成功应用.混沌运动是确定系统具有内在随机性的一种运动,它的行为极其敏感地依赖于初始条件.混沌系统从两个极其邻近的初始点出发的两条轨道... 相似文献
8.
基于混沌动力学的日径流时间序列预测 总被引:4,自引:2,他引:4
介绍了探求时间序列中的混沌特征数的常规方法,给出一种基于混沌理论的预测算法,并以葛洲坝隔河岩水库的入库日径流序列为例检验了这一方法,其预测效果令人满意。 相似文献
9.
提出一种基于嵌入理论和确定集上的预测误差的混沌时间序列预测方法.该方法不仅克服了仅用延迟嵌入技术的弊端,而且也降低了直接使用预测误差决定模型状态向量的盲目性.实证分析结果表明该方法在实际预测中是有效的. 相似文献
10.
GA优化支持向量机用于混沌时间序列预测 总被引:11,自引:1,他引:11
介绍了利用支持向量机与重构相空间理论预测混沌时间序列的方法,并以股价时间序列为样本,比较了几种常用核函数的预测能力,实验表明高斯核的预测能力明显好于其它核.使用遗传算法优化了高斯核支持向量机的参数,优化后其预测能力较经验定参方法有明显提高,且好于传统的预测方法. 相似文献
11.
变分贝叶斯Kriging模型预测混沌时间序列 总被引:1,自引:0,他引:1
基于变分贝叶斯及Kriging数学思想,提出了一种含噪混沌时间序列的相空间域预测模型。在相空间域中利用变分贝叶斯推断方法估计模型中的回归系数,采用Kriging数学方法估计模型中的随机部分,将该模型对含加性高斯噪声的Lorenz及Mackey-Glass混沌时间序列进行了预测研究;结果表明该文方法能够有效地预测含噪混沌时间序列,且具有较强的抗噪能力以及有效地克服了过拟和现象;同时预测精度对重构相空间的嵌入维数和时间延迟的变化不敏感。 相似文献
12.
基于改进典型相关分析的混沌时间序列预测 总被引:1,自引:0,他引:1
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性. 相似文献
13.
ZHAO DongHua RUAN Jiong CAI ZhiJie 《科学通报(英文版)》2007,52(4):570-573
In the present paper, we propose an approach of combination prediction of chaotic time series. The method is based on the adding-weight one-rank local-region method of chaotic time series. The method allows us to define an interval containing a future value with a given probability, which is obtained by studying the prediction error distribution. Its effectiveness is shown with data generated by Logistic map. 相似文献
14.
建筑物沉降的时间序列分析与预报 总被引:8,自引:0,他引:8
首先对建筑物沉降数据序列进行了平稳化处理,然后研究了平稳化序列的建模和预报方法,最后结合建筑物沉降监测的具体实例进行了时间序列的分析与预报.结果表明:将时间序列分析方法应用于建筑物沉降监测,具有建模容易、计算简单、预报快速的特点;时间序列分析方法对建筑物沉降具有较高的模型拟合及预报精度,尤其是短期预报,效果更佳;应尽量避免使用时间序列进行中长期预报,要根据实测数据对所建模型进行实时更新. 相似文献
15.
提出了一种新的混沌时间序列预测方法——多维泰勒网方法.该方法不以相空间重构方法中嵌入维数和时间延迟这两个关键参数的选取为前提,无需系统的先验知识和机理,仅根据已知的时间序列样本,通过多维泰勒网模型获得n元一阶多项式差分方程组,进而得到能反映非线性系统动力学特性的多维泰勒网动态模型.在此基础上提出了基于多维泰勒网的自适应多步预测方法,通过数据窗口的滑动自适应建模,实现对混沌时间序列的多步预测.将该方法应用于Lorenz混沌时间序列的一步和多步预测,均方误差分别达到2.56×10-5和2.76×10-3.仿真结果表明,该方法可以对混沌时间进行有效预测,且具有较高的预测精度. 相似文献
16.
使用机器学习算法对建筑能耗进行预测正逐渐成为建筑设计初期重要的决策辅助工具,机器学习算法的选择及其参数设置一直是机器学习领域研究的热点和难点。但现有研究大多从算法原理角度进行预测模型的选择及参数设置,训练样本集的特征信息未得到充分利用。为此,提出一种以样本量及样本分布特征为出发点的样本集质量分类方法,针对不同质量样本集测试不同机器学习算法的学习性能,制定不同质量样本集的算法选择及参数设置策略。分析样本特征与算法性能之间的关系,为建筑设计提供有效指导。 相似文献
17.
混沌时间序列局域预测模型及其应用 总被引:4,自引:0,他引:4
为了确定滞时、嵌入维数和最邻近点数运3个混沌时间序列局域预测模型参数,首先利用关联积分法确定滞时和嵌入维数.重构混沌时间序列的相空间;而后在此基础上,提出一种新的预测模型——加权动态局域预测模型.该模型综合考虑了广义自由度和邻近点权重,给出了确定最优邻域的判定指标.实际水文系统的计算分析表明,加权动态局域预测模型具有较高的预测精度,是一种有效的用于混沌水文时间序列的预测模型. 相似文献
18.
为提高加权一阶局域模型的预测精度,提出一种改进型混沌时间序列预测方法.该方法用衰减系数和时间延迟修正向量距离公式,调节邻近点与中心点的相关性,同时,只用邻近点中与预测值相关性最大的分量进行线性拟合.利用该方法对Henon混沌时间序列进行预测的结果表明,衰减系数取最佳值时,相对于现有算法,该方法可以更精确地预测混沌时间序... 相似文献
19.
JIANGWei-jin XUYu-sheng 《武汉大学学报:自然科学英文版》2004,9(5):735-739
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system. and estimated the parameter of the model by using the best update option. In the end. we forecast the intending series value in its mutua[[y space. The examp[e shows that it can increase the precision in the estimated process by selecting the best mode[ steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means, 相似文献