首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据中能重离子束与靶物质相互作用的特点, 提出了进行中能重离子束深度剂量分布计算的方法. 与高能离子束中弹核碎裂为主要因素和低能离子束中能量歧离是惟一因素相比, 中能离子束深度剂量分布的计算包括了随贯穿深度增加而增加的能量展宽和一个简单的弹核碎裂假设. 计算了中能碳离子束和氧离子束的相对深度剂量分布, 并将它们同实验测量结果进行了比较, 计算得到的Bragg曲线在Bragg峰的上游和下游与实验测量相符合. 由于计算和实验条件的限制, Bragg峰区计算与实验结果出现了偏差, 但在实验误差范围内计算值与实验测量值基本符合. 细致分析了造成这一偏差的原因, 并给出了由于这些原因带来偏差的幅度.  相似文献   

2.
金属Ti离子注入,可以改善钢材表面的耐摩擦、耐磨损性能。研究结果表明大注剂量(>1×10~(17)cm~(-2))将会产生明显的效果,而近来研制成功的金属蒸汽真空弧离子源(MEVVA源)恰好能满足这一要求。该源以脉冲方式工作,发出的离子束脉冲电流可高达1A,平均束流密度可高达mA/cm~2量级;如此强的束流注入,既可产生足够厚的处理深度,又可使衬  相似文献   

3.
吴知非 《科学通报》1992,37(13):1232-1232
一、引言 离子注入技术及低温等离子体技术都应用于材料的表面改性工作。等离子体源离子注入(PSII)是将二者结合起来的的一种表面改性新方法,它在浸沉于等离子体中的靶极上加负高压脉冲,故正离子可从任意方向打到靶极以达到离子注入的目的。它与常规离子注入相比,既可省离子加速器,又可不用离子束扫描装置及样品转动装置。又因它不是“视线型”的,故对形状复杂的样品,更显其优越性。它注入均匀、效率高且操作方便、成本低,是一种具有发展前途的新技术。  相似文献   

4.
江兴流 《科学通报》1989,34(7):495-495
一、引言 强流毫微秒脉冲离子束注入金属样品过程中,由于离子混合、骤热急冷以及瞬态冲击压力波的作用,使金属表面的形貌、微观结构和物理化学性能发生很大的变化。在此之前,我们已经观察到脉冲离子束注入金属时微晶和非晶结构的形成。考虑到强脉冲离子束在气体密度  相似文献   

5.
离子束生物工程加速生物诱变育种的新构想   总被引:2,自引:0,他引:2  
低能重离子注入生物学是80年代在我国兴起的新的研究领域,这一新的交叉边缘学科一诞生,就以其具有重大的科学意义和广阔的应用前景而倍受世界瞩目,继而欧、美、日等发达国家也相继开展了这一研究。目前,这一学科的研究已在基础和应用两方面取得可喜成就,我国的这一研究受到了国家科委和李鹏总理的关怀,并取得了良好的社会和经济效益。如安徽农科院用离子束注入技术育成了早籼S9042和硬粳D9055,具有高产、多抗、优质的特点。离子束注入在动物和微生物诱变育种上的应用并取得丰硕成果.近年来在全国各地亦有不少报道。在离子束生物学…  相似文献   

6.
余文炎 《科学通报》1982,27(10):640-640
近年来对激光等离子体的共振吸收与二次谐波虽有不少报道,但均是作为单个现象看待,没有从相互影响进行研究。我们采用3~6J,100PSNd玻璃激光辐照平面铝靶,靶面功率密度~10~(15)w/cm~2。改变激光偏振及靶面入射角,用盒式卡计测得了靶  相似文献   

7.
软X射线激光用分束镜研制   总被引:3,自引:0,他引:3  
软X射线干涉测量是通过软X射线激光经过Mach-zehnder干涉仪完成的, 是测量临界面附近等离子体状态的重要方法. 基于软X射线多层膜的性能特点, 指出软X射线干涉测量的干涉仪各光学元件的入射角越接近正入射越好, 分束镜的设计应以其反射率和透过率的乘积为衡量标准. 用离子束溅射法制作了类镍银13.9 nm软X射线激光干涉测量所需的分束镜, 实测表明其面形精度达到纳米量级, 反射率和透过率乘积大于1.6%.  相似文献   

8.
罗正明 《科学通报》1992,37(14):1272-1272
一、引言 讨论低能轻离子在固体表面的反射现象,对于聚变研究、表面分析及离子束注入技术等有重要的意义。能量低于20keV时,入射轻离子与靶原子的多次碰撞过程变得重要。以前计算这一能区内轻离子的反射系数主要有两种方法:一是基于标准输运理论的近似计算,如RADELI程序;二是用Monte-Carlo方法进行模拟,常用的有MARLOWE程序和TRIM  相似文献   

9.
碰撞电离诱导AuL_l特征辐射的极化   总被引:1,自引:0,他引:1  
夏宗璜 《科学通报》1994,39(1):17-17
当一束准直的电子束或带电离子束轰击靶原子时,被碰撞电离的靶原子将发射其特征辐射或俄歇电子.一般来说,被电离的靶原子的空穴态满足一定条件(n,1>0,j>1/2),其伴随空穴衰变发射的特征辐射或俄歇电子相对于入射束方向具有非各向同性的角分布,对特征辐射来说还应是极化的.  相似文献   

10.
徐川  付恩刚  高原  任晓堂 《科学通报》2023,(9):1096-1103
加速器在核物理、材料科学、考古等领域都有着广泛应用.北京大学在20世纪90年代左右有3台静电加速器投入运行,分别是1.7 MV串列静电加速器、4.5 MV单级静电加速器和6 MV串列静电加速器. 1.7 MV串列静电加速器配备有高频电荷交换负离子源和铯溅射负离子源,可引出从H到Au之间大部分元素的离子,离子能量从几百keV到若干MeV,主要开展室温及高温离子辐照实验、背散射和沟道分析等离子束分析工作.近年,利用离子辐照束线在核材料研究等方面取得了许多重要科研成果. 4.5 MV静电加速器端电压在0.7~3.8 MV连续可调,主要加速氢/氦同位素离子,并可通过辐照靶材料产生准单能直流/脉冲中子场.该中子场主要应用于(n, α)核反应截面的测量.近年,基于4.5 MV静电加速器建立了综合离子束分析系统,可进行卢瑟福背散射、核反应分析和粒子诱发X射线分析3种离子束分析方法的综合应用.利用该方法,对Fe合金样品中杂质元素的含量和部分元素的深度分布进行了测量. 6 MV EN串列加速器是牛津大学赠于北京大学,为许多基础和应用研究提供了支持,其主要用于加速器质谱、离子辐照以及离子束分析工作,也可以...  相似文献   

11.
用离子加速器的离子束进行物质表面分析是近十年来发展起来的,它是表面科学中的有效分析手段,包括背散射(RBS)、质子荧光分析(PIXE)和核反应三种方法。它们各有特点,互相补充。所谓背散射就是能量为1~3MeV的~4He~+离子束或能量为几百KeV的质子束打到靶上,入射离子和靶原子核发生库仑相互作用,部分入射离子发生大角度散射的现象。用金—硅面垒半导体探测器可测得此背散射离  相似文献   

12.
魏星  薛忠营  武爱民  王湘  李显元  叶斐  陈杰  陈猛  张波  林成鲁  张苗  王曦 《科学通报》2010,55(19):1963-1967
研究了200 keV注入能量下, 单步氧离子注入工艺制备SIMOX材料的剂量窗口. 在此基础上, 提出了一种第一步注入剂量为3.6×1017 cm−2、第二步注入剂量为3×1015 cm−2的改进型两步氧离子注入工艺, 用于制备高质量的SIMOX材料. 与单步氧离子注入工艺的剂量窗口相比, 注入剂量减少了18.2%. 采用椭圆偏振测试仪测量了所制备样品的埋氧层厚度及均匀性. 通过透射电子显微镜观察到无缺陷的顶层硅以及原子级陡峭的顶层硅/埋氧层界面, 表明两步氧离子注入工艺制备的SIMOX材料具有高的顶层硅晶体质量和剖面结构. 采用原子力显微镜对比研究了单步和两步氧离子注入工艺制备的SIMOX材料顶层硅/埋氧层界面形貌.  相似文献   

13.
罗宝军  洪国同  梁惊涛 《科学通报》2010,55(10):945-949
液氦的冲击压缩实验是一种获取样品氦在高温高密度下性质的可行途径. 介绍了一种自研制的应用于100 Pa环境中的液氦温度低温靶, 该低温靶具有独立真空夹层和气冷屏的结构设计, 获得了3.63 K的最低温度和3.7 K的稳定温度, 降温过程和温度稳定性都完全满足冲击压缩实验的要求. 为了研究低温靶的绝热性能, 利用Fluent对低温靶热分析, 计算结果与实验结果吻合较好, 计算方法可以有效用于低温靶的优化设计.  相似文献   

14.
郝建华 《科学通报》1993,38(14):1280-1280
超导薄膜是高温超导材料弱电应用的关键技术。目前磁控溅射(包括直流和射频)和激光淀积方法已被广泛应用获得高温超导薄膜。相比这两种常用制膜方法,离子束溅射(IBS)具有独特优势。IBS工作气压很低,靶与衬底间不存在外加电场,减少了薄膜中杂质,消除了普通等离子体溅射方法中负离子反溅射有害效应。同时也不存在激光淀积薄膜均匀性差、薄膜中颗粒较大等缺点,是一种很有发展前途的制膜手段。利用离子束技术后退火制备性能较好的  相似文献   

15.
杨春生  戚震中  徐东  周狄  蔡炳初 《科学通报》1996,41(10):955-958
薄膜初生过程对薄膜的结构,界面的形成和性能有着重要的影响.真空蒸发沉积薄膜的大量研究表明:薄膜的生长方式主要有3种:层状方式(Frank-van der Merwe Mode,FMMode)、岛状生长(Volmer-Weber Mode,VW Mode)和层岛混合型(Stranski-KrastanovMode,SK Mode).基片的种类、位向、表面状况和沉积温度对薄膜的初生过程也有较大的作用.然而,作为薄膜制备的主要方法之一的离子束溅射成膜初生过程的研究尚少见报道.由于离子束溅射成膜速度快、质量优、易控制而得到广泛应用.本文应用扫描Auger能谱仪原位研究离子束溅射纯元素成膜的初生过程.利用能谱仪的超高真空环境和二次离子枪完整地重复了正常的离子束溅射铜,铁元素的成膜过程,较为直观地了解了溅射成膜的整个过程.  相似文献   

16.
首先介绍了重离子束治癌的特点及当前的技术进步, 着重讨论了放射性离子束(RIB)在肿瘤治疗上增添的优势, 详细叙述了在日本放射医学综合研究所(NIRS)重离子医用加速器(HIMAC)上旨在肿瘤治疗的放射性离子束 C 的实验研究, 包括束流产生、参数优化、深度物理剂量分布、细胞辐照后的存 9活效应以及 C 和 C 束的相对生物效率(RBE)比较. 最终结果: 在40 mm 厚铍靶、10 mm 厚铝降能器、 9 125%动量接收度时, 采用 430 MeV/u、1.8×109 粒子/s 的初试束 C, 得到的 C 束的产生率为 9.07×10?6, 12 9纯度为 82.88%, 采用点扫描技术时, 在直径为 10 mm 的中心面积内, 可获得均匀度为 89.6%的辐照场,这时在入口处的剂量率为0.5Gy/h. 在Bragg峰附近范围内的细胞存活实验中, C束的平均RBE为5.28, 9而 C 束的平均 RBE 为 2.93, C 束的 RBE 要比 C 束的高1.8 倍, 这显示 C 束在 Bragg 峰附近范围内, 12 9 12 9对细胞的杀伤力要比 C 强, 在肿瘤治疗上会更有效. 12  相似文献   

17.
首先介绍了重离子束治癌的特点及当前的技术进步,着重讨论了放射性离子束(RIB)在肿瘤治疗上增添的优势,详细叙述了在日本放射医学综合研究所(NIRS)重离子医用加速器(HIMAC)上旨在肿瘤治疗的放射性离子束9C的实验研究,包括束流产生、参数优化、深度物理剂量分布、细胞辐照后的存活效应以及9C和12C束的相对生物效率(RBE)比较.最终结果 在40 mm厚铍靶、10 mm厚铝降能器、5%动量接收度时,采用430 MeV/u、1.8×109粒子/s的初试束12C,得到的9C束的产生率为9.07×10-6,纯度为82.88%,采用点扫描技术时,在直径为10 mm的中心面积内,可获得均匀度为89.6%的辐照场,这时在入口处的剂量率为0.5Gy/h.在Bragg峰附近范围内的细胞存活实验中,9C束的平均RBE为5.28,而12C束的平均RBE为2.93,9C束的RBE要比12C束的高1.8倍,这显示9C束在Bragg峰附近范围内,对细胞的杀伤力要比12C强,在肿瘤治疗上会更有效.  相似文献   

18.
近年来,世界范围内X射线激光研究在多方面取得了较大进展,引起人们广泛的注意,特别是,其中有关提高具有潜在实用价值的复合泵浦X射线激光的增益长度积(GL值)的研究是最活跃的前沿课题之一.采用新的靶型以加速冷却是一种可能的有效途径.此外,对不同结构的靶型,等离子体不均匀性的平滑和增长是大家关注的焦点问题.本文报道了线聚焦1.05μm激光辐照具有空间周期刻槽结构的栅状靶所产生等离子体的发射特性的实验研究结果.文中从空间和时间分辨的线状等离子体轴向和侧向软X射线光谱测量,空间分辨的电子温度和电子密度诊断,以及等离子体二次谐波发射测量等角度研究了栅状结构靶与激光相互作用的物理过程.通过与平面靶比较,实验观察到若干可能的激光跃迁的轴向发射增强等重要现象,表明采用这种结构的靶将可能提高复合X射线激光的增益.  相似文献   

19.
金属非晶化的新方法——高功率毫微秒脉冲离子束注入   总被引:1,自引:1,他引:0  
江兴流 《科学通报》1987,32(1):25-25
一、引言 离子注入所产生的离子混和过程是得到多种非晶合金的一种重要手段,而用强流脉冲离子束注入可以产生一般弱流注入不能达到的骤热急冷过程,而且,原子混合的深度可以超过入射离子能量所对应的射程,因此,采用这一注入方式将扩大金属非晶化的研究范围。  相似文献   

20.
MeV B离子注入铌酸钾晶体形成光波导的微结构研究   总被引:1,自引:0,他引:1  
MeV离子注入已被用于研制光波导,特别是对低温相变材料尚属目前唯一的手段,铌酸钾晶体(KNbO3,简称KN)即为具有低温相变性质的非线性光学材料,被认为是最有应用前景的波导材料之一.近年来,文献[1,2]报道了利用MeV轻离子H或He注入法研究KN晶体的光波导特性.我们依据重离子与物质相互作用的特点,能够在降低注入剂量,形成稳定的波导边界和减少光损耗方面较之轻离子注入更为有利.在文献[3]中报道了用60MeVB离子,1×1015cm-2剂量注入KN晶体形成非渗漏型光波导的新结果.本文用高分辨TEM进一步对样品做了光波导的微结构…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号