首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
概率主元分析(PPCA)能够根据过程变量的预测误差及其主元的白化值实现对过程的监控。但是PPCA只适合线性过程,而对非线性过程的监控效果不理想。为克服上述缺点,提出一种基于核PPCA(KPPCA)的过程监控方法,定性讨论了KPPCA模型的参数和主元个数选择问题,构造了高维空间的SPE和T2监控指标。该方法利用核函数将非线性数据映射到高维空间,去除了过程的非线性,然后利用PPCA对满足线性关系的过程变量映射值进行监控。仿真结果验证了该方法对非线性过程监控的优越性。  相似文献   

2.
对于动态系统,传统的核主元分析(KPCA)方法处理的效果不理想.滑动窗口核主元分析方法能适应动态系统的正常参数漂移,但是该方法处理大量的样本时需要较长的运算时间.因此,提出一种在线压缩核主元分析的自适应过程监控方法.该方法在大量的样本中选定较小的训练集作为初始压缩集进行建模,对在线实时采集的数据进行分析,判断新的样本是否正常.若为正常样本,判断该样本是否加入压缩集中,在加入压缩集的同时自动更新在线KPCA模型.将该方法应用到数值例子和田纳西-伊斯曼(TE)过程,仿真结果验证了该方法的有效性.  相似文献   

3.
针对化工聚合反应过程的特点,结合小波分解多分辨率特性和独立元分析(ICA)提取个数较少的相互独立信号的优点,改进了基于自相关神经元网络的非线性主元分析(NLPCA)方法。在传统的非线性PCA方法中引入了独立元分析模块,不仅解决了自相关神经元网络中确定各层神经元个数的问题,而且以最少的独立元个数捕捉数据的非线性特征。多尺度监控可以识别各种幅值的故障,提高了监控效果。在此基础上,计算I2、I2e和SPE统计量用于故障检测。贡献图法用于识别故障变量。在聚酯生产过程上的仿真结果表明,改进后的方法比传统的非线性PCA方法更及时地检测到过程故障,运用贡献图可以有效地实现故障变量分离。  相似文献   

4.
基于核函数主元分析的SVM建模方法及应用   总被引:2,自引:0,他引:2  
为有效克服线性建模方法在非线性建模方面的不足,将核函数思想引入到主元分析方法(PCA)中,有效提取实验数据中的非线性特征信息,并将其作为支持向量机(SVM)的输入变量,建立工业过程软测量模型。该方法应用于丙烯腈聚合过程中转化率的预报,结果表明:该方法的预测精度优于PCA-SVM方法和KPCA-NN方法。  相似文献   

5.
基于核函数主元分析的软测量建模方法及应用   总被引:5,自引:0,他引:5  
提出了基于核函数主元分析(PCA)方法提取变量的特征信息以有效处理非线性数据,并在此基础上进行软测量建模的方法。利用该方法建立了工业萘初馏塔酚油含萘量软测量模型,工业应用结果表明了该方法的有效性和优越性。  相似文献   

6.
模式分析的核函数设计方法及应用   总被引:1,自引:1,他引:1  
利用卷积算子和H1(R)核函数给出了一种设计Hn(R)核函数的新方法,该方法简便易行。运用该方法设计的核函数,应用在轴承正常振动信号数据、轴承内圈、外圈以及滚动体故障振动信号数据进行核主成分分析(KPCA)中,仿真结果表明:该方法可以有效地识别轴承正常和内圈、外圈以及滚动体故障。  相似文献   

7.
基于PCA和KPCA特征抽取的SVM网络入侵检测方法   总被引:6,自引:0,他引:6  
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。  相似文献   

8.
提出了一种改进的主分量分析迭代算法,进行了仿真实验,得出的结论为本算法在估计弱信号性能时要比多重信号分类算法方便。  相似文献   

9.
针对环网柜电缆接头故障发生前后时刻的时间相关性较强,且故障的发生是一个非线性过程,将动态核主元分析应用于环网柜电缆接头故障检测并建立故障检测模型.该模型可以在解决非线性变量难以分离的同时提取变量之间的动态自相关特性,并通过建立动态核主元在线监测模型及时检测故障的发生.最后对采集的环网柜电缆接头故障数据进行实验分析,实验结果证明所提方法能有效地检测出环网柜电缆接头故障的发生,且检测精度和误报率均优于之前的算法.  相似文献   

10.
核函数方法及其模型选择   总被引:10,自引:0,他引:10  
核函数方法已成为近年来机器学习领域继人工神经网络方法之后又一个十分流行和有效的方法.阐述了核函数方法的基本原理、特点及实施步骤,介绍了几种主要的核函数方法,最后重点分析和讨论了核函数方法中参数选择和核函数构造等核函数方法研究中的热点问题,并对其未来研究作了展望.  相似文献   

11.
在核主成分分析中,给每个训练数据赋予一个置信权重,将训练数据视为样本空间的模糊点,研究了基于模糊点数据的核主成分分析.数值模拟表明,该方法能够有效控制异常点对主成分的影响.同时,该方法也为数据先验信息的利用提供了一个可行的途径.  相似文献   

12.
简介了核主成分分析的原理及利用核主成分分析的图像去噪方法.通过使用核函数,在特征空间中对噪声图像使用主成分分析进行降噪处理.基于MDS的思想,使用核方法计算出在特征空间中降噪后的图像与其邻域点之间的内积约束关系,通过核函数重构出在原空间中降噪图像与其邻域点的内积约束关系,基于此内积约束关系在原空间中重构出降噪图像,从而达到通过核主成分分析对图像降噪的目的.比原有的MDS算法更稳定,对图像的噪声部分有更好的去除效果.  相似文献   

13.
本文简介了核主成分分析的原理及利用核主成分分析的图像去噪问题。通过使用核函数,在特征空间中对噪声图像使用主成分分析进行降噪处理,基于MDS的思想,使用核方法计算出在特征空间中降噪后的图像与其邻域点之间的内积约束关系,通过核函数重构出在原空间中降噪图像与其邻域点的内积约束关系,基于此内积约束关系在原空间中重构出降噪图像,从而达到通过核主成分分析对图像降噪的目的。对比原有的MDS方法,本文的算法更稳定,对图像的噪声部分有更好的去除效果。  相似文献   

14.
针对电主轴系统特点,提出基于改进核主元分析(KPCA)的故障检测方法,引入混合核函数的定义,将多项式核和径向基核的混合核方法与主元分析方法(PCA)相结合,解决采用单一核函数诊断故障时的高误诊率问题.首先对数据进行预处理,然后使用混合核函数对数据矩阵进行映射,映射到高维特征空间,使非线性数据变量变为线性数据变量,并使用PCA提取变量数据的高维空间相关特征确定主元个数,最后根据混合非线性主元特征计算出的T2和Q统计量,实现在线故障检测.该方法改进传统核函数的选取方法,充分考虑工业过程中的非线性,更精确地描述工业过程特性,可以准确、有效地检测出电主轴系统故障.对田纳西-伊斯曼(TE)过程以及电主轴系统的应用实例证明该方法的可行性.  相似文献   

15.
The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes.  相似文献   

16.
In this research,a new fault detection method based on kernel independent component analysis (kernel ICA) is developed.Kernel ICA is an improvement of independent component analysis (ICA),and is different from kernel principal component analysis (KPCA) proposed for nonlinear process monitoring.The basic idea of our approach is to use the kernel ICA to extract independent components efficiently and to combine the selected essential independent components with process monitoring techniques.I2 (the sum of the ...  相似文献   

17.
张瑞成  裴然 《科学技术与工程》2020,20(17):6944-6949
复杂工业过程的数据具有非高斯、非线性特性,在进行故障检测时,利用核独立元分析(kernel independent component analysis, KICA)方法能有效解决这一问题。然而,由于在处理数据时使用了核函数,无法将线性的贡献图方法直接用于故障诊断,因此采用一种基于改进KICA结合非线性贡献图的方法,对非线性工业过程进行故障检测与诊断。该方法利用基于超松弛因子的FastKICA方法建立监控模型,得到检测故障信息。在发生故障后,通过非线性贡献图法诊断故障变量。最后,选用带钢热连轧工业过程实测数据进行仿真,通过与传统贡献图方法比较,结果表明此方法能够对非线性数据进行有效可靠的故障检测和故障诊断,验证了非线性贡献图的有效性。  相似文献   

18.
主元分析及数据重构在过程监控中的应用   总被引:2,自引:0,他引:2  
利用主元分析方法,通过矩阵运算、降低维数以提取过程变量的主要特征,实现对工艺数据的压缩,既可解决过程变量间的相关问题,同时还有清除测量噪声的效果.化工吸附分离过程监控的应用实例表明,主要过程变量可由15个缩减为6个,累积解释程度为98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号