首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin, and share significant structural similarity. Those peptides are best known for their stimulatory effects on pigmentation and steroidogenesis. Melanocortins are synthesized in various sites in the central nervous system and in peripheral tissues, and participate in regulating multiple physiological functions. Research during the past decade has provided evidence that melanocortins elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize the various melanocortins and the physiological antagonists, agouti signaling protein and agouti-related protein. These advances have opened new horizons for exploring the significance of melanocortins, their antagonists, and their receptors in a variety of important physiological functions. Received 5 October 2000; accepted 10 November 2000  相似文献   

2.
Dependence receptors: between life and death   总被引:2,自引:0,他引:2  
The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.Received 19 December 2003; received after revision 19 February 2004; accepted 26 February 2004  相似文献   

3.
4.
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.  相似文献   

5.
Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.  相似文献   

6.
7.
The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy.  相似文献   

8.
LDL receptor relatives at the crossroad of endocytosis and signaling   总被引:10,自引:0,他引:10  
For many years, the low-density lipoprotein (LDL) receptor and the LDL receptor-related protein (LRP) have been considered to be prototypes of cargo receptors which deliver, via endocytosis, macromolecules into cells. However, the recent identification of additional members of this gene family and examination of their biology has revealed that at least some of these proteins are also signaling receptors. Very low density lipoprotein receptor and ApoER2 transmit the extracellular reelin signal into migrating neurons, and thus are key components of the reelin pathway which governs neuronal layering of the forebrain during embryonic brain development. LRP5 and LRP6 are integral components of the Wnt signaling pathway which is central to many processes of metazoan development, cell proliferation, and tumor formation. Adaptor proteins interacting with the cytosolic domains of these receptors might orchestrate their ability to deliver their cargo or a signal.  相似文献   

9.
Hematopoietic stem and progenitor cells reside predominantly in the bone marrow. They supply billions of mature blood cells every day during life through maturation into multilineage progenitors and self-renewal. Newly produced mature cells serve to replenish the pool of circulating blood cells at the end of their life-span. These mature blood cells and a few hematopoietic progenitors normally exit the bone marrow through the sinusoidal vessels, a specialized venous vascular system that spreads throughout the bone marrow. Many signals regulate the coordinated mobilization of hematopoietic cells from the bone marrow to the circulation. In this review, we present recent advances on hematopoiesis and hematopoietic cell mobilization with a focus on the role of Ephrin ligands and their Eph receptors. These constitute a large family of transmembrane ligands and receptors that play critical roles in development and postnatally. New insights point to distinct roles of ephrin and Eph in different aspects of hematopoiesis.  相似文献   

10.
Regulation of receptor function by cholesterol   总被引:8,自引:0,他引:8  
Cholesterol influences many of the biophysical properties of membranes and is nonrandomly distributed between cellular organelles, subdomains of membranes, and leaflets of the membrane bilayer. In combination with the high dynamics of cholesterol distribution, this offers many possibilities for regulation of membrane-embedded receptors. Depending on the receptor, cholesterol can have a strong influence on the affinity state, on the binding capacity, and on signal transduction. Most important, cholesterol may stabilize receptors in defined conformations related to their biological functions. This may occur by direct molecular interaction between cholesterol and receptors. In this review, we discuss the functional dependence of the nicotinic acetylcholine receptor as well as different G protein-coupled receptors on the presence of cholesterol.  相似文献   

11.
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics. Received 19 October 2008; received after revision 7 November 2008; accepted 11 November 2008 C. L. Salanga, M. O’Hayre: These authors contributed equally.  相似文献   

12.
Dopamine is an important neurotransmitter that regulates several key functions in the brain, such as motor output, motivation and reward, learning and memory, and endocrine regulation. Dopamine does not mediate fast synaptic transmission, but rather modulates it by triggering slow-acting effects through the activation of dopamine receptors, which belong to the G-protein-coupled receptor superfamily. Besides activating different effectors through G-protein coupling, dopamine receptors also signal through interaction with a variety of proteins, collectively termed dopamine receptor-interacting proteins. We focus on the dopamine D4 receptor, which contains an important polymorphism in its third intracellular loop. This polymorphism has been the subject of numerous studies investigating links with several brain disorders, such as attention-deficit hyperactivity disorder and schizophrenia. We provide an overview of the structure, signalling properties and regulation of dopamine D4 receptors, and briefly discuss their physiological and pathophysiological role in the brain.  相似文献   

13.
14.
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors are one type of ionotropic glutamate receptor involved in rapid excitatory synaptic transmission. AMPA receptors have been increasingly implicated in long-term potentiation, and recent evidence suggests that they may play a role in disorders affecting the nervous system. The finding that early in postnatal development AMPA receptors are not expressed has lately been the focus of much attention. Resolving the factors involved in AMPA receptor expression suggests that their induction is a developmentally regulated process with the possibility that alterations in receptor expression may be correlated with pathology in neurological disorders. This paper provides an overview of factors involved in AMPA receptor induction as well as of their role in plasticity and neuronal pathologies. Received 5 December 2000; received after revision 12 January 2001; accepted 2 February 2001  相似文献   

15.
16.
17.
In mammals, the mannose receptor family consists of four members, Endo180, DEC-205, phospholipase A2 receptor and the mannose receptor. The extracellular domains of all these receptors contain a similar arrangement of domains in which an Nterminal cysteine-rich domain is followed by a single fibronectin type II domain and eight or ten C-type lectin-like domains. This review focuses on the threedimensional structure of the receptors in the mannose receptor family and its functional implication. Recent research has revealed that several members of this family can exist in at least two configurations: an extended conformation with the N-terminal cysteinerich domain pointing outwards from the cell membrane and a bent conformation where the N-terminal domains fold back to interact with C-type lectin-like domains at the middle of the structure. Conformational transitions between these two states seem to regulate the interaction of these receptors with ligands and their oligomerization. Received 25 October 2007; received after revision 23 November 2007; accepted 7 December 2007  相似文献   

18.
Neurons establish specific connections by extending projections to contact their targets. Projections, such as axons, navigate to the target by sensing guidance cues in their environment and responding with directed movement and shape change. The recent identification of the molecular identities of many guidance cues and guidance receptors has demonstrated that axons are guided to their targets by combinations of cues that attract and repel them. The current challenge is to elucidate how these guidance cue/receptor interactions control navigation. This review focuses on recent progress in identifying the signaling pathways downstream of these receptors and in determining why an axon is attracted or repelled by a particular guidance cue.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号