首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
将基于弹塑性断裂力学的内聚力模型引入有限元法,采用非线性界面单元,通过定义界面单元的法向和切向应力与张开和滑移变形之间的关系描述裂缝发生后的界面力学特性,模拟某高心墙堆石坝的坝顶裂缝。计算过程中考虑筑坝材料的流变和湿化变形。研究结果表明:基于内聚力模型的有限元法计算出的裂缝与实际情况比较吻合。采用该方法计算了蓄水期之后3年的坝顶裂缝,裂缝变化幅度微小,较为稳定,且并未深入心墙。在首次蓄水的过程中,上游堆石流变和湿化变形较大,上下游坝壳料沉降不均匀程度也较大,因此,坝体变形不协调导致坝顶出现纵向裂缝。  相似文献   

2.
湿化作用对粘土斜心墙坝应力变形影响   总被引:1,自引:0,他引:1  
在坝体粗粒料湿化变形室内试验研究成果的基础上,结合粘土斜心墙坝蓄水变形及实际运行中存在的问题,进行了有限元仿真计算.分析结果表明,在蓄水湿化变形后,坝体的最大沉降区域向心墙上游侧偏移,上游侧坝体围压显著降低,坝体上游侧应力水平增大.这与大坝变形规律较吻合,由此可知,文中所示方法是可行的,研究成果具有一定的工程参考价值.  相似文献   

3.
瀑布沟水电站为砾石土心墙堆石坝,最大坝高186m,为目前国内最高砾石土心墙堆石坝.以瀑布沟水电站砾石土心墙堆石坝施工期、蓄水期变形监测资料为基础,对其典型监测断面变形特征进行了探讨.分析结果表明,施工期各测点沉降测值随填筑高程的升高发展较快,运行期随时间发展较慢,水位对沉降变形有影响且有一定的滞后性,心墙整体变形规律性良好,下游堆石区的沉降变形以次堆石区为最,过渡料区次之,反滤料区较小,坝体下游堆石区变形不协调,这是瀑布沟大坝坝顶出现浅表裂缝的主要原因.该结论对土心墙堆石坝设计和施工有一定的指导意义.  相似文献   

4.
瀑布沟水电站为砾石土心墙堆石坝,最大坝高186m,为目前国内最高砾石土心墙堆石坝.以瀑布沟水电站砾石土心墙堆石坝施工期、蓄水期变形监测资料为基础,对其典型监测断面变形特征进行了探讨.分析结果表明,施工期各测点沉降测值随填筑高程的升高发展较快,运行期随时间发展较慢,水位对沉降变形有影响且有一定的滞后性,心墙整体变形规律性良好,下游堆石区的沉降变形以次堆石区为最,过渡料区次之,反滤料区较小,坝体下游堆石区变形不协调,这是瀑布沟大坝坝顶出现浅表裂缝的主要原因.该结论对土心墙堆石坝设计和施工有一定的指导意义.  相似文献   

5.
针对某V型河谷上的心墙堆石坝,采用邓肯-张E-v模型描述堆石料,Goodman单元模型描述土与结构体的接触面,三维有限元方法对比分析不同河谷宽高比时竣工期心墙堆石坝的应力和变形。结果表明:河谷地形对心墙堆石坝应力变形影响显著,河谷宽高比越小,竣工期坝体沉降、顺河向水平位移、纵断面坝轴向水平位移都越小;河谷宽高比越大,竣工期坝基覆盖层的沉降越大,防渗墙的应力也越大。  相似文献   

6.
为了解胶凝面板堆石坝在竣工期和蓄水期的工作性态,采用离心模型试验方法对不同胶凝含量下坝体的应力变形进行试验研究,同时与非线形有限元法数值模拟计算进行对比分析.结果表明:随着坝体材料中胶凝含量的增加,坝体沉降和面板挠度在竣工期和蓄水期明显减小,改善了面板的受力条件,可保证防渗体系的正常工作;胶凝含量的增加,提高了坝体的抗剪强度和承载力,设计时坝坡可明显放陡,坝体断面显著缩小,大大节省了筑坝堆石料,并能保证大坝在应力变形和稳定性方面的安全可靠性;离心试验得到的竣工期和蓄水期的坝体应力、位移,面板法向位移与数值计算结果规律基本一致,可为胶凝面板堆石坝的设计提供参考.  相似文献   

7.
堆石料湿化变形三轴试验研究   总被引:3,自引:0,他引:3  
采用大型三轴仪分别进行各向等压及不同围压不同湿化应力水平条件下的三轴湿化试验,对堆石料在上述情况下的湿化变形特性进行研究。基于单线法,建立适合于堆石料湿化变形的新模型,通过研究湿化轴向变形及体积变形与围压以及湿化应力水平的关系,提出单线法湿化变形经验公式,并结合试验成果对堆石料的湿化模型参数进行拟合。研究结果表明:在各向等压条件下,湿化体积变形与轴向变形和围压的关系分别可用双曲线与直线表示;在围压一定时,偏应力引起的湿化体积变形与湿化应力水平的关系可采用线性拟合,而湿化轴向变形与湿化应力水平呈指数关系;拟合曲线与试验结果曲线较吻合,表明该模型能较好地反映堆石料湿化变形的特征,证实了该模型的合理性。  相似文献   

8.
沥青混凝土心墙风化料坝三维地震响应分析   总被引:1,自引:0,他引:1  
基于大型商业有限元软件ABAQUS,并利用其平台提供的UMAT子程序接口开发了等效线性模型,分析某沥青混凝土心墙风化料坝的地震响应,为大坝的抗震安全评价提供依据.有限元计算结果表明:在地震作用下,坝顶、上下游坝坡近坝顶等位置有可能会有坝料松动、滑落的可能性,在上述区域需采取适当的抗震加固措施;心墙及坝体的动剪应力不是很大,分布较均匀,不会出现剪切破坏;坝体在地震中的沉陷比水平位移大,坝体地震沉陷量约为最大坝高的0.27%.  相似文献   

9.
旁多水利枢纽工程大坝为碾压式沥青混凝土心墙砂砾石坝,通过砂砾石坝壳料现场碾压工艺性试验,确定现场施工参数和施工方法,采用现场对砂砾石料松铺80cm厚,用18t振动碾强振20遍时的压实干密度作为最大干密度,进而确定现场砂砾石坝壳料的质量控制指标,为整个大坝填筑碾压施工和质量控制提供依据。  相似文献   

10.
基于改进的湿化变形计算模型,采用邓肯-张的E-B模型模拟大坝的堆石体,对接缝止水失效情况下堆石体湿化变形对混凝土面板应力和变形的影响进行了研究。研究结果表明,由于堆石料的湿化变形影响,使得坝体整体沉降增加并发生向下游的水平位移,同时使得面板的挠度增大,且面板的压应力增量比较大,对面板的应力变形产生不利影响。因此,对坝体先期进行浸水,使主要的湿化变形在面板浇筑前发生,可以改善面板的应力变形状态。所得结果适用于类似工程的设计和施工。  相似文献   

11.
水库大坝变形特别是沉降值,是反映水库安全运行的重要数据,哈拉布拉水库在施工、运行过程中,其内部变形和外部变形,经监测和测量数据表明,大坝变形尤其是沉降量,与同类型堆石坝对比都很小,目前水库运行安全正常。对其原因分析有:坝基覆盖层全部清除,坝体直接座落在基岩上,大幅度减少了坝基沉降值;大坝坝体堆石体填筑碾压标准提高,孔隙率由原设计28%和24%降低为22%,大坝坝体压缩变形小,降低了坝体沉降量。以上表明建设过程中的施工质量控制及变更措施对大坝安全运行产生了有利影响。  相似文献   

12.
为研究坝壳料填筑级配的空间变异性及其对土石坝变形、应力的影响,以两河口心墙堆石坝最大断面坝段为例,选取分形分布作为级配模型,引入地质统计学方法,以指数模型、高斯模型为变异函数模型,分析级配分形维数的空间变异结构,采用克里金估计方法模拟堆石料、过渡料级配的空间随机分布;将随机模拟与有限元方法相结合,对大坝进行500次随机应力、变形计算后得到收敛结果,并与确定性有限元法作比较。结果表明:考虑级配空间分布的随机性时,坝体水平向位移、最大沉降量等都有不同程度的增大;若不考虑随机性,有超出50%的概率低估坝体应力、变形;考虑级配随机特性的计算方法对于高堆石坝设计及变形控制问题具有较好的应用价值。  相似文献   

13.
江苏宜兴抽水蓄能电站枢纽工程上水库主坝为沥青混凝土面板堆石坝,坝址区地形地质条件复杂,下游面最大高差达285m,呈覆盖于建基面上的贴坡体形状.对此坝体选取代表性断面进行稳定分析,采用三维非线性有限元进行变形计算.计算显示,该坝坡的抗滑稳定安全系数满足规范要求,坝体内变形和应力水平均不大,不会发生剪切破坏.  相似文献   

14.
为提高土石坝的安全运行性能,提出在常规土石坝中设置混凝土纵向增强体,这一刚性结构体在坝体内具有防渗、受力和抵抗变形三重作用。采用经典力学方法定量分析了纵向增强体的防渗作用、抗变形能力和承受外力的能力,得出增强体厚度与上下游水位、堆石坝体物料特性之间的定量关系。理论公式推导将增强体作为竖向固端梁,主要受上下游水体作用、堆石主动土压力和因心墙和堆石差异沉降而产生的堆石对墙体两侧的拖曳力作用。由扰曲微分方程得出增强体顶部变位及转角和底部固定端应力计算公式,并以此进行设计复核,进而提出通过兼顾基础灌浆和满足增强体应力要求的预埋灌浆钢管的施工方法。  相似文献   

15.
沥青混凝土心墙坝三维有限元静动力分析   总被引:1,自引:0,他引:1  
针对沥青混凝土心墙均质坝,运用非线性三维有限元法进行静动力分析.对大坝填筑与蓄水阶段分别进行模拟,并计算了沥青混凝土心墙坝动力响应,分析了坝高、动剪切模量、地震峰值加速度及地震波对心墙最大动剪应变的影响,总结了心墙应力与变形、动剪应变分布规律.结果表明:静力状态下,尤其是满蓄期,应重点关注心墙坝肩处、顶部和底部区域,且高心墙处于更不利的应力与变形状态.地震作用下,动剪应变最大值发生在河谷中央心墙顶部区域,但动剪应变幅值较小,一般不超过0.5%.  相似文献   

16.
在分析面板坝堆石体施工期坝体沉降影响因素的基础上,将影响沉降的主要因素作为网络输入参数,以测点沉降量作为网络的输出,建立了神经网络模型.以水布垭面板坝堆石体为例,将模型预测值与实测结果进行了对比,结果表明,预测值与实测结果比较接近,该神经网络能很好地反映面板坝堆石体施工期沉降变形与其影响因素之间的非线性映射关系,预测结果可作为后期填筑反馈设计的依据,同时可通过网络输入参数的调整检验某一因素对坝体沉降的影响程度.  相似文献   

17.
基于工程实践,提出一种新坝型——纵向增强体土石坝。该坝型以常规土石坝为依托,在其内部建造集防渗与受力为一体的混凝土刚性结构体(纵向增强体),使其成为"刚柔相济"的坝工结构。在进行变形分析计算时,理论上将此纵向增强体作为竖向固端梁,考虑其承受上、下游水荷载与坝体堆石的作用力,特别是堆石沉降引起的纵向增强体表层的下拉荷载作用,同时考虑到纵向增强体在坝体中分割了上、下游坝壳料连续的应力应变关系,在各种工况下的力学表现更接近于挡土墙作用。根据提出的"纵向增强体土石坝"设计计算方法,结合工程实践,重点介绍纵向增强体土石坝在四川通江方田坝水库设计中的应用。  相似文献   

18.
300m级弧形直心墙超高堆石坝应力变形分析   总被引:1,自引:0,他引:1  
对某300m级超高直心墙堆石坝及作为比较方案的弧形直心墙堆石坝进行了三维有限元应力变形计算.对2种坝型在蓄水期心墙的应力、变形进行了比较分析,结果表明:蓄水期,弧形心墙堆石坝比直心墙堆石坝的水平位移和沉降略小;弧形心墙坝的心墙拱效应较弱,其抗水力劈裂能力优于直心墙堆石坝;弧形心墙堆石坝坝肩处的应力水平小于直心墙堆石坝的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号