首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis. Using homozygosity mapping in the original family in whom Hartnup disorder was discovered, we confirmed that the critical region for one causative gene was located on chromosome 5p15 (ref. 3). This region is homologous to the area of mouse chromosome 13 that encodes the sodium-dependent amino acid transporter B(0)AT1 (ref. 4). We isolated the human homolog of B(0)AT1, called SLC6A19, and determined its size and molecular organization. We then identified mutations in SLC6A19 in members of the original family in whom Hartnup disorder was discovered and of three Japanese families. The protein product of SLC6A19, the Hartnup transporter, is expressed primarily in intestine and renal proximal tubule and functions as a neutral amino acid transporter.  相似文献   

2.
3.
Lysinuric protein intolerance (LPI; OMIM 222700) is a rare, recessive disorder with a worldwide distribution, but with a high prevalence in the Finnish population; symptoms include failure to thrive, growth retardation, muscle hypotonia and hepatosplenomegaly. A defect in the plasma membrane transport of dibasic amino acids has been demonstrated at the baso-lateral membrane of epithelial cells in small intestine and in renal tubules and in plasma membrane of cultured skin fibroblasts from LPI patients. The gene causing LPI has been assigned by linkage analysis to 14q11-13. Here we report mutations in SLC7A7 cDNA (encoding y+L amino acid transporter-1, y+LAT-1), which expresses dibasic amino-acid transport activity and is located in the LPI region, in 31 Finnish LPI patients and 1 Spanish patient. The Finnish patients are homozygous for a founder missense mutation leading to a premature stop codon. The Spanish patient is a compound heterozygote with a missense mutation in one allele and a frameshift mutation in the other. The frameshift mutation generates a premature stop codon, eliminating the last one-third of the protein. The missense mutation abolishes y+LAT-1 amino-acid transport activity when co-expressed with the heavy chain of the cell-surface antigen 4F2 (4F2hc, also known as CD98) in Xenopus laevis oocytes. Our data establish that mutations in SLC7A7 cause LPI.  相似文献   

4.
Thiamine-responsive megaloblastic anaemia syndrome (TRMA; MIM 249270) is an autosomal recessive disorder with features that include megaloblastic anaemia, mild thrombocytopenia and leucopenia, sensorineural deafness and diabetes mellitus. Treatment with pharmacologic doses of thiamine ameliorates the megaloblastic anaemia and diabetes mellitus. A defect in the plasma membrane transport of thiamine has been demonstrated in erythrocytes and cultured skin fibroblasts from TRMA patients. The gene causing TRMA was assigned to 1q23.2-q23.3 by linkage analysis. Here we report the cloning of a new gene, SLC19A2, identified from high-through-put genomic sequences due to homology with SLC19A1, encoding reduced folate carrier 1 (refs 8-10). We cloned the entire coding region by screening a human fetal brain cDNA library. SLC19A2 encodes a protein (of 497 aa) predicted to have 12 transmembrane domains. We identified 2 frameshift mutations in exon 2. a 1-bp insertion and a 2-bp deletion, among four Iranian families with TRMA. The sequence homology and predicted structure of SLC19A2, as well as its role in TRMA, suggest that its gene product is a thiamine carrier, the first to be identified in complex eukaryotes.  相似文献   

5.
6.
Sialic acid storage diseases (SASD, MIM 269920) are autosomal recessive neurodegenerative disorders that may present as a severe infantile form (ISSD) or a slowly progressive adult form, which is prevalent in Finland (Salla disease). The main symptoms are hypotonia, cerebellar ataxia and mental retardation; visceromegaly and coarse features are also present in infantile cases. Progressive cerebellar atrophy and dysmyelination have been documented by magnetic resonance imaging (ref. 4). Enlarged lysosomes are seen on electron microscopic studies and patients excrete large amounts of free sialic acid in urine. A H+/anionic sugar symporter mechanism for sialic acid and glucuronic acid is impaired in lysosomal membranes from Salla and ISSD patients. The locus for Salla disease was assigned to a region of approximately 200 kb on chromosome 6q14-q15 in a linkage study using Finnish families. Salla disease and ISSD were further shown to be allelic disorders. A physical map with P1 and PAC clones was constructed to cover the 200-kb area flanked by the loci D6S280 and D6S1622, providing the basis for precise physical positioning of the gene. Here we describe a new gene, SLC17A5 (also known as AST), encoding a protein (sialin) with a predicted transport function that belongs to a family of anion/cation symporters (ACS). We found a homozygous SLC17A5 mutation (R39C) in five Finnish patients with Salla disease and six different SLC17A5 mutations in six ISSD patients of different ethnic origins. Our observations suggest that mutations in SLC17A5 are the primary cause of lysosomal sialic acid storage diseases.  相似文献   

7.
The disorder Amish microcephaly (MCPHA) is characterized by severe congenital microcephaly, elevated levels of alpha-ketoglutarate in the urine and premature death. The disorder is inherited in an autosomal recessive pattern and has been observed only in Old Order Amish families whose ancestors lived in Lancaster County, Pennsylvania. Here we show, by using a genealogy database and automated pedigree software, that 23 nuclear families affected with MCPHA are connected to a single ancestral couple. Through a whole-genome scan, fine mapping and haplotype analysis, we localized the gene affected in MCPHA to a region of 3 cM, or 2 Mb, on chromosome 17q25. We constructed a map of contiguous genomic clones spanning this region. One of the genes in this region, SLC25A19, which encodes a nuclear mitochondrial deoxynucleotide carrier (DNC), contains a substitution that segregates with the disease in affected individuals and alters an amino acid that is highly conserved in similar proteins. Functional analysis shows that the mutant DNC protein lacks the normal transport activity, implying that failed deoxynucleotide transport across the inner mitochondrial membrane causes MCPHA. Our data indicate that mitochondrial deoxynucleotide transport may be essential for prenatal brain growth.  相似文献   

8.
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.  相似文献   

9.
Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+-Cl- transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non-French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.  相似文献   

10.
X-linked hypohidrotic ectodermal dysplasia results in abnormal morphogenesis of teeth, hair and eccrine sweat glands. The gene (ED1) responsible for the disorder has been identified, as well as the analogous X-linked gene (Ta) in the mouse. Autosomal recessive disorders, phenotypically indistinguishable from the X-linked forms, exist in humans and at two separate loci (crinkled, cr, and downless, dl) in mice. Dominant disorders, possibly allelic to the recessive loci, are seen in both species (ED3, Dlslk). A candidate gene has recently been identified at the dl locus that is mutated in both dl and Dlslk mutant alleles. We isolated and characterized its human DL homologue, and identified mutations in three families displaying recessive inheritance and two with dominant inheritance. The disorder does not map to the candidate gene locus in all autosomal recessive families, implying the existence of at least one additional human locus. The putative protein is predicted to have a single transmembrane domain, and shows similarity to two separate domains of the tumour necrosis factor receptor (TNFR) family.  相似文献   

11.
Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly and dysplastic nails and teeth. Congenital cardiac defects, most commonly a defect of primary atrial septation producing a common atrium, occur in 60% of affected individuals. The disease was mapped to chromosome 4p16 in nine Amish subpedigrees and single pedigrees from Mexico, Ecuador and Brazil. Weyers acrodental dysostosis (MIM 193530), an autosomal dominant disorder with a similar but milder phenotype, has been mapped in a single pedigree to an area including the EvC critical region. We have identified a new gene (EVC), encoding a 992-amino-acid protein, that is mutated in individuals with EvC. We identified a splice-donor change in an Amish pedigree and six truncating mutations and a single amino acid deletion in seven pedigrees. The heterozygous carriers of these mutations did not manifest features of EvC. We found two heterozygous missense mutations associated with a phenotype, one in a man with Weyers acrodental dysostosis and another in a father and his daughter, who both have the heart defect characteristic of EvC and polydactyly, but not short stature. We suggest that EvC and Weyers acrodental dysostosis are allelic conditions.  相似文献   

12.
Mutations in the gene encoding ABCR (ABCA4), a photoreceptor-specific ATP-binding cassette (ABC) transporter, are responsible for autosomal recessive Stargardt disease (STGD), an early onset macular degeneration, and some forms of autosomal recessive cone-rod dystrophy and autosomal recessive retinitis pigmentosa. Heterozygosity for ABCA4 mutations may also represent a risk factor for age-related macular degeneration (AMD), although this idea is controversial. An ongoing challenge in the analysis of ABCA4-based retinopathies arises from the observation that most of the ABCA4 sequence variants identified so far are missense mutations that are rare in both patient and control populations. With the current sample size of most sequence variants, one cannot determine statistically whether a particular sequence variant is pathogenic or neutral. A related challenge is to determine the degree to which each pathogenic variant impairs ABCR function, as genotype-phenotype analyses indicate that age of onset and disease severity correlate with different ABCA4 alleles. To address these questions, we performed a functional analysis of human ABCR and its variants. These experiments reveal a wide spectrum of biochemical defects in these variants and provide insight into the transport mechanism of ABCR.  相似文献   

13.
14.
Congenital hereditary endothelial dystrophy (CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.  相似文献   

15.
16.
Bardet-Biedl syndrome (BBS, OMIM 209900) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation and hypogenitalism. Individuals with BBS are also at increased risk for diabetes mellitus, hypertension and congenital heart disease. What was once thought to be a homogeneous autosomal recessive disorder is now known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13 p12 (BBS3), 15q22.3 q23 (BBS4), 2q31 (BBS5) and 20p12 (BBS6). There has been considerable interest in identifying the genes that underlie BBS, because some components of the phenotype are common. Cases of BBS mapping ro BBS6 are caused by mutations in MKKS; mutations in this gene also cause McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly and congenital heart defects). In addition, we recently used positional cloning to identify the genes underlying BBS2 (ref. 16) and BBS4 (ref. 17). The BBS6 protein has similarity to a Thermoplasma acidophilum chaperonin, whereas BBS2 and BBS4 have no significant similarity to chaperonins. It has recently been suggested that three mutated alleles (two at one locus, and a third at a second locus) may be required for manifestation of BBS (triallelic inheritance). Here we report the identification of the gene BBS1 and show that a missense mutation of this gene is a frequent cause of BBS. In addition, we provide data showing that this common mutation is not involved in triallelic inheritance.  相似文献   

17.
Spondylocostal dysostosis (SD, MIM 277300) is a group of vertebral malsegmentation syndromes with reduced stature resulting from axial skeletal defects. SD is characterized by multiple hemivertebrae, rib fusions and deletions with a non-progressive kyphoscoliosis. Cases may be sporadic or familial, with both autosomal dominant and autosomal recessive modes of inheritance reported. Autosomal recessive SD maps to a 7.8-cM interval on chromosome 19q13.1-q13.3 that is homologous with a mouse region containing a gene encoding the Notch ligand delta-like 3 (Dll3). Dll3 is mutated in the X-ray-induced mouse mutant pudgy (pu), causing a variety of vertebrocostal defects similar to SD phenotypes. Here we have cloned and sequenced human DLL3 to evaluate it as a candidate gene for SD and identified mutations in three autosomal recessive SD families. Two of the mutations predict truncations within conserved extracellular domains. The third is a missense mutation in a highly conserved glycine residue of the fifth epidermal growth factor (EGF) repeat, which has revealed an important functional role for this domain. These represent the first mutations in a human Delta homologue, thus highlighting the critical role of the Notch signalling pathway and its components in patterning the mammalian axial  相似文献   

18.
Nephrogenic diabetes insipidus (DIR) is an X-linked disorder characterized by insensitivity of the distal nephron for the pituitary hormone, vasopressin. The genetic map location of the DIR gene on chromosome Xq28 coincides with the physical map location of the functional vasopressin renal V2-type receptor. Recently, the human and rat cDNAs for the vasopressin V2 receptor (AVPR2) have been identified. We show here that the structural AVPR2 gene is localized between DXS52 and G6PD, which is within the genetic map location of DIR. We also tested eight X-linked DIR probands and their families for mutations in one of the most conserved extracellular regions of AVPR2: in three of them, we have identified point mutations resulting in non-conservative amino acid substitutions which cosegregated with DIR in all families.  相似文献   

19.
Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats-like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-beta-binding protein 1. In addition, we observed a significant increase in total and active TGF-beta in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-beta signaling and may be the underlying mechanism of geleophysic dysplasia.  相似文献   

20.
Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4, 5), where there is a cluster of several SLRP genes. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号