首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Recent authors have raised objections to the counterfactual interpretation of the Aharonov–Bergmann–Lebowitz (ABL) rule of time-symmetrised quantum theory (TSQT). I distinguish between two different readings of the ABL rule, counterfactual and non-counterfactual, and confirm that TSQT advocate L. Vaidman is employing the counterfactual reading to which these authors object. Vaidman has responded to the objections by proposing a new kind of time-symmetrised counterfactual, which he has defined in two different ways. It is argued that neither definition succeeds in overcoming the objections, except in a limited special case previously noted by Cohen and Hiley. In addition, a connection is made between TSQT and Price’s concept of ‘advanced action’, which further supports the special case discussed.  相似文献   

2.
3.
This article presents a discussion of the notion of quantum ontological excess baggage, first proposed by Hardy. It is argued here that this idea does not have the significance suggested in his paper. It is shown that if this concept is properly analyzed, it fails to pose any threat to the ontic approach to quantum theory in general.  相似文献   

4.
According to what has become a standard history of quantum mechanics, in 1932 von Neumann persuaded the physics community that hidden variables are impossible as a matter of principle, after which leading proponents of the Copenhagen interpretation put the situation to good use by arguing that the completeness of quantum mechanics was undeniable. This state of affairs lasted, so the story continues, until Bell in 1966 exposed von Neumann’s proof as obviously wrong. The realization that von Neumann’s proof was fallacious then rehabilitated hidden variables and made serious foundational research possible again. It is often added in recent accounts that von Neumann’s error had been spotted almost immediately by Grete Hermann, but that her discovery was of no effect due to the dominant Copenhagen Zeitgeist.We shall attempt to tell a story that is more historically accurate and less ideologically charged. Most importantly, von Neumann never claimed to have shown the impossibility of hidden variables tout court, but argued that hidden-variable theories must possess a structure that deviates fundamentally from that of quantum mechanics. Both Hermann and Bell appear to have missed this point; moreover, both raised unjustified technical objections to the proof. Von Neumann’s argument was basically that hidden-variables schemes must violate the “quantum principle” that physical quantities are to be represented by operators in a Hilbert space. As a consequence, hidden-variables schemes, though possible in principle, necessarily exhibit a certain kind of contextuality.As we shall illustrate, early reactions to Bohm’s theory are in agreement with this account. Leading physicists pointed out that Bohm’s theory has the strange feature that pre-existing particle properties do not generally reveal themselves in measurements, in accordance with von Neumann’s result. They did not conclude that the “impossible was done” and that von Neumann had been shown wrong.  相似文献   

5.
6.
When attempting to assess the strengths and weaknesses of various principles in their potential role of guiding the formulation of a theory of quantum gravity, it is crucial to distinguish between principles which are strongly supported by empirical data – either directly or indirectly – and principles which instead (merely) rely heavily on theoretical arguments for their justification. Principles in the latter category are not necessarily invalid, but their a priori foundational significance should be regarded with due caution. These remarks are illustrated in terms of the current standard models of cosmology and particle physics, as well as their respective underlying theories, i.e., essentially general relativity and quantum (field) theory. For instance, it is clear that both standard models are severely constrained by symmetry principles: an effective homogeneity and isotropy of the known universe on the largest scales in the case of cosmology and an underlying exact gauge symmetry of nuclear and electromagnetic interactions in the case of particle physics. However, in sharp contrast to the cosmological situation, where the relevant symmetry structure is more or less established directly on observational grounds, all known, nontrivial arguments for the “gauge principle” are purely theoretical (and far less conclusive than usually advocated). Similar remarks apply to the larger theoretical structures represented by general relativity and quantum (field) theory, where – actual or potential – empirical principles, such as the (Einstein) equivalence principle or EPR-type nonlocality, should be clearly differentiated from theoretical ones, such as general covariance or renormalizability. It is argued that if history is to be of any guidance, the best chance to obtain the key structural features of a putative quantum gravity theory is by deducing them, in some form, from the appropriate empirical principles (analogous to the manner in which, say, the idea that gravitation is a curved spacetime phenomenon is arguably implied by the equivalence principle). Theoretical principles may still be useful however in formulating a concrete theory (analogous to the manner in which, say, a suitable form of general covariance can still act as a sieve for separating theories of gravity from one another). It is subsequently argued that the appropriate empirical principles for deducing the key structural features of quantum gravity should at least include (i) quantum nonlocality, (ii) irreducible indeterminacy (or, essentially equivalently, given (i), relativistic causality), (iii) the thermodynamic arrow of time, (iv) homogeneity and isotropy of the observable universe on the largest scales. In each case, it is explained – when appropriate – how the principle in question could be implemented mathematically in a theory of quantum gravity, why it is considered to be of fundamental significance and also why contemporary accounts of it are insufficient. For instance, the high degree of uniformity observed in the Cosmic Microwave Background is usually regarded as theoretically problematic because of the existence of particle horizons, whereas the currently popular attempts to resolve this situation in terms of inflationary models are, for a number of reasons, less than satisfactory. However, rather than trying to account for the required empirical features dynamically, an arguably much more fruitful approach consists in attempting to account for these features directly, in the form of a lawlike initial condition within a theory of quantum gravity.  相似文献   

7.
Operational frameworks are very useful to study the foundations of quantum mechanics, and are sometimes used to promote antirealist attitudes towards the theory. The aim of this paper is to review three arguments aiming at defending an antirealist reading of quantum physics based on various developments of standard quantum mechanics appealing to notions such as quantum information, non-causal correlations and indefinite causal orders. Those arguments will be discussed in order to show that they are not convincing. Instead, it is argued that there is conceptually no argument that could favour realist or antirealist attitudes towards quantum mechanics based solely on some features of some formalism. In particular, both realist and antirealist views are well accomodable within operational formulations of the theory. The reason for this is that the realist/antirealist debate is located at a purely epistemic level, which is not engaged by formal aspects of theories. As such, operational formulations of quantum mechanics are epistmologically and ontologically neutral. This discussion aims at clarifying the limits of the historical and methodological affinities between scientific antirealism and operational physics while engaging with recent discoveries in quantum foundations. It also aims at presenting various realist strategies to account for those developments.  相似文献   

8.
9.
It has often been suggested that retrocausality offers a solution to some of the puzzles of quantum mechanics: e.g., that it allows a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum nonlocality, without action-at-a-distance. Some writers have argued that time-symmetry counts in favour of such a view, in the sense that retrocausality would be a natural consequence of a truly time-symmetric theory of the quantum world. Critics object that there is complete time-symmetry in classical physics, and yet no apparent retrocausality. Why should the quantum world be any different?This note throws some new light on these matters. I call attention to a respect in which quantum mechanics is different, under some assumptions about quantum ontology. Under these assumptions, the combination of time-symmetry without retrocausality is unavailable in quantum mechanics, for reasons intimately connected with the differences between classical and quantum physics (especially the role of discreteness in the latter). Not all interpretations of quantum mechanics share these assumptions, however, and in those that do not, time-symmetry does not entail retrocausality.  相似文献   

10.
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to “perform many computations simultaneously” except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. Rather, entanglement makes available types of computation processes which, while not exponentially larger than classical ones, are unavailable to classical systems. The essence of quantum computation is that it uses entanglement to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.  相似文献   

11.
12.
The aim of this paper is to analyze the modal-Hamiltonian interpretation of quantum mechanics in the light of the Galilean group. In particular, it is shown that the rule of definite-value assignment proposed by that interpretation has the same properties of Galilean covariance and invariance as the Schrödinger equation. Moreover, it is argued that, when the Schrödinger equation is invariant, the rule can be reformulated in an explicitly invariant form in terms of the Casimir operators of the Galilean group. Finally, the possibility of extrapolating the rule to quantum field theory is considered.  相似文献   

13.
General Relativity and the Standard Model often are touted as the most rigorously and extensively confirmed scientific hypotheses of all time. Nonetheless, these theories appear to have consequences that are inconsistent with evidence about phenomena for which, respectively, quantum effects and gravity matter. This paper suggests an explanation for why the theories are not disconfirmed by such evidence. The key to this explanation is an approach to scientific hypotheses that allows their actual content to differ from their apparent content. This approach does not appeal to ceteris-paribus qualifiers or counterfactuals or similarity relations. And it helps to explain why some highly idealized hypotheses are not treated in the way that a thoroughly refuted theory is treated but instead as hypotheses with limited domains of applicability.  相似文献   

14.
David Wallace has recently argued that the eigenstate–eigenvalue (E–E) link has no place in serious discussions of quantum mechanics on the grounds that, as he claims, the E–E link is an invention of philosophers rather than the community of practicing physicists. This raises an historical question regarding the origin of the link. This paper aims to answer this question by tracing the historical development of the link through six key textbooks of quantum mechanics. In light of the historical evidence from these textbooks, it is argued that Wallace provides insufficient grounds for dismissing the E–E link from discussions of quantum mechanics.  相似文献   

15.
This paper relates both to the metaphysics of probability and to the physics of time asymmetry. Using the formalism of decoherent histories, it investigates whether intuitions about intrinsic time directedness that are often associated with probability can be justified in the context of no-collapse approaches to quantum mechanics. The standard (two-vector) approach to time symmetry in the decoherent histories literature is criticised, and an alternative approach is proposed, based on two decoherence conditions (‘forwards’ and ‘backwards’) within the one-vector formalism. In turn, considerations of forwards and backwards decoherence and of decoherence and recoherence suggest that a time-directed interpretation of probabilities, if adopted, should be both contingent and perspectival.  相似文献   

16.
A distinction is made between theory-driven and phenomenological models. It is argued that phenomenological models are significant means by which theory is applied to phenomena. They act both as sources of knowledge of their target systems and are explanatory of the behaviors of the latter. A version of the shell-model of nuclear structure is analyzed and it is explained why such a model cannot be understood as being subsumed under the theory structure of Quantum Mechanics. Thus its representational capacity does not stem from its close link to theory. It is shown that the shell model yields knowledge about the target and is explanatory of certain behaviors of nuclei. Aspects of the process by which the shell model acquires its representational capacity are analyzed. It is argued that these point to the conclusion that the representational status of the model is a function of its capacity to function as a source of knowledge and its capacity to postulate and explain underlying mechanisms that give rise to the observed behavior of its target.  相似文献   

17.
Relationships between current theories, and relationships between current theories and the sought theory of quantum gravity (QG), play an essential role in motivating the need for QG, aiding the search for QG, and defining what would count as QG. Correspondence is the broad class of inter-theory relationships intended to demonstrate the necessary compatibility of two theories whose domains of validity overlap, in the overlap regions. The variety of roles that correspondence plays in the search for QG are illustrated, using examples from specific QG approaches. Reduction is argued to be a special case of correspondence, and to form part of the definition of QG. Finally, the appropriate account of emergence in the context of QG is presented, and compared to conceptions of emergence in the broader philosophy literature. It is argued that, while emergence is likely to hold between QG and general relativity, emergence is not part of the definition of QG, and nor can it serve usefully in the development and justification of the new theory.  相似文献   

18.
The analyzability of the universe into subsystems requires a concept of the “independence” of the subsystems, of which the relativistic quantum world supports many distinct notions which either coincide or are trivial in the classical setting. The multitude of such notions and the complex relations between them will only be adumbrated here. The emphasis of the discussion is placed upon the warrant for and the consequences of a particular notion of subsystem independence, which, it is proposed, should be viewed as primary and, it is argued, provides a reasonable framework within which to sensibly speak of relativistic quantum subsystems.  相似文献   

19.
A modeling approach to real‐time forecasting that allows for data revisions is shown. In this approach, an observed time series is decomposed into stochastic trend, data revision, and observation noise in real time. It is assumed that the stochastic trend is defined such that its first difference is specified as an AR model, and that the data revision, obtained only for the latest part of the time series, is also specified as an AR model. The proposed method is applicable to the data set with one vintage. Empirical applications to real‐time forecasting of quarterly time series of US real GDP and its eight components are shown to illustrate the usefulness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we describe some first steps for bringing the framework of branching space-times (BST) to bear on quantum information theory. Our main application is quantum error correction. It is shown that BST offers a new perspective on quantum error correction: as a supplement to the orthodox slogan, “fight entanglement with entanglement”, we offer the new slogan, “fight indeterminism with indeterminism”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号