首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
环氧树脂是一类很重要的化工原料.它只有与固化剂反应后才能产生有实用性能的材料.能使环氧树脂固化的固化剂种类很多,其中含氮有机化合物最多、最重要.本文系统地总结了用作环氧树脂的固化剂中的含氮有机化合物的品种和性能,对胺类固化环氧树脂的反应机理、固化反应速度、以及固化产物的性能也作了介绍.  相似文献   

2.
利用丙烯酸酯类对己二胺进行改性,作为环氧树脂的室温固化剂。利用红外光谱分析了固化剂的氨解变化,讨论了改性固化剂对环氧树脂固化反应产物的拉伸、弯曲、冲击等性能的影响。实验结果表明,丙烯酸酯改性的己二胺固化剂可以在室温下固化环氧树脂,所得的环氧树脂具有较好的力学性能。  相似文献   

3.
采用氯磺化聚乙烯与乙二胺、二氨基二苯基甲烷的混合物反应,合成一种新型固化剂;研究了混合多元胺的组成对合成反应的影响,以及所制固化剂的固化性能及其固化环氧树脂的物理-机械性能。实验结果表明该固化剂能使环氧树脂涂料在潮湿表面和水中良好成膜,所固化的环氧树脂涂膜具有良好的附着力、柔韧性、冲击强度等物理机械性能和良好的耐蚀性。  相似文献   

4.
环氧树脂的韧性固化剂的合成   总被引:6,自引:0,他引:6  
用酸酐与一系列不同相对分子质量的柔性链剂聚物合成了环氧树脂的韧性固化剂。该韧性固化剂,在固化后的环氧树脂网络中,通过化学链引入了柔性链,与普通固化剂固化的环氧树脂相比,其韧性等机械强都有一定程度的提高。  相似文献   

5.
目的 制备环氧树脂/石英砂粒状包覆体,研究环氧树脂在不同反应温度、不同固化剂和不同反应时间下的固化率.方法 以三亚乙基四胺(TETA)和乙二胺(EDA)为固化剂,在明胶分散作用下制备环氧树脂/石英砂包覆体,并用摄影显微镜揭示不同尺寸石英砂包覆体的物理结构.结果 随着反应温度的升高和反应时间的延长,固化率不断提高,TETA固化剂体系的固化速度快于EDA固化剂体系.结论 要得到均匀、稳定的粒状包覆体,必须有细小的、易在介质中分散的核,且初始固化速度快.TETA作为固化剂更为合适.  相似文献   

6.
本文报道了用氯磺化聚乙烯与混合二元胺反应的环氧树脂固化剂的合成,并研究了混合二元胺的组成、用量的影响及固化剂的性能。该固化剂固化的环氧树脂具有良好的附着力,柔韧性和冲击强度等,还能使环氧树脂在潮湿表面上和水中良好成膜。  相似文献   

7.
含羟基马来酰亚胺固化邻甲酚醛环氧树脂   总被引:1,自引:0,他引:1  
合成N-对羟基苯基马来酰亚胺,并将其用作固化剂固化邻甲酚醛环氧树脂.采用DSC方法研究了HPM固化邻甲酚醛环氧树脂反应的固化反应动力学.对固化产物的热分析结果表明:N-对羟基苯基马来酰亚胺是非常良好的耐热固化剂,可明显提高邻甲酚醛环氧树脂的耐热性能,固化产物的起始热分解温度为338℃,分解10%时的温度为386℃,700℃时的残留百分量为49%.  相似文献   

8.
树脂基体对导电胶体积电阻率的影响   总被引:3,自引:0,他引:3  
以环氧树脂、胺类固化剂Aradur9506和片状银粉为原料制配导电胶,通过红外光谱(FT-IR)、扫描电镜(SEM)等方法进行测试,研究等温固化过程中环氧树脂的官能团数量以及固化剂添加量对导电胶体积电阻率的影响,并探讨其影响机理.研究结果表明:随着环氧树脂官能团数目的增加,体积电阻率逐渐降低,其中四官能团的环氧树脂时体积电阻率最低,为1.299×10-4Ω·cm;随着固化剂质量的增加,体积电阻率呈现先下降后上升的趋势,当环氧树脂与固化剂质量比为25∶5时,体积电阻率最低,为3.112×10-4 Ω·cm;体积电阻率与树脂基体的固化收缩率呈反比例关系,固化收缩率越大,体积电阻率越低.  相似文献   

9.
环氧树脂/蒙脱土纳米复合材料的制备方法   总被引:1,自引:0,他引:1  
着重介绍了以热固性树脂———环氧树脂作为聚合物基体的环氧树脂/蒙脱土纳米复合材料的制备方法 ,分别介绍了不同固化体系的制备情况 ,如胺类固化剂 ,低分子量聚酰胺及酸酐固化剂等。  相似文献   

10.
有机硅改性水性环氧固化剂固化行为及固化膜热性能   总被引:2,自引:0,他引:2  
用三乙烯四胺与环氧树脂在丙二醇甲醚中反应制得环氧树脂-三乙烯四胺加成物,经脂肪族缩水甘油醚/γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)对加成物封端,加酸中和及加水分散制得水性环氧固化剂,用傅立叶红外对聚合产物进行结构表征,研究了有机硅烷用量对固化剂的固化行为及固化膜热性能的影响.结果表明:GPTMS的加入使固化剂的固化起始温度及固化反应表观活化能降低,固化反应速率增加,固化膜的热稳定性提高.GPTMS的摩尔分数控制在3%~5%为宜.  相似文献   

11.
合成了双酚F环氧/环硫树脂,采用元素分析、红外光谱分析和核磁共振光谱分析确定了合成树脂的结构,对比研究了环硫基团/环氧基团为0/100、15/85和50/50(质量比)的双酚F环硫/环氧树脂与脂环胺DMDC固化剂体系的固化行为。通过差示扫描量热仪(DSC)、动态力学热分析仪(DMTA)等手段研究了固化剂配比对体系固化程度、固化物的模量和玻璃化转变温度的影响,结果显示:当环硫基团质量分数从0分别增加到15%和50%时,环硫/环氧树脂/胺体系不仅固化速度加快,且固化剂用量相应减少约15%和50%,说明胺基与环硫基团开环反应形成的—SH或—S-可作为固化剂进一步与环氧基团和环硫基团进行开环反应;另一方面,固化物的模量和玻璃化转变温度有所提高,说明环硫树脂固化物交联网络更密集,也证明了环硫/环氧树脂的固化反应行为与环氧树脂存在不同。  相似文献   

12.
玻璃钢缠绕气瓶用环氧树脂固化动力学研究   总被引:1,自引:1,他引:0  
制备了以环氧树脂为基体,甲基六氢苯酐为固化剂,咪唑为促进剂的环氧树脂体系。采用非等温差示扫描法(DSC)研究了环氧树脂/甲基六氢苯酐体系的固化过程,得出了升温速率对固化体系DSC曲线的影响。引用Kissinger理论,确定了固化反应的动力学参数以及固化反应动力学模型。  相似文献   

13.
环氧树脂/石墨微片复合导电材料的导电性   总被引:3,自引:0,他引:3  
研究环氧树脂 /石墨微片复合导电材料的制备规律 ,实验发现固化剂种类、固化剂用量和固化条件对复合材料的电阻率都有影响 不同的固化剂 ,复合材料的电阻率不同 ,在最佳固化剂用量和最佳固化条件下 ,复合材料可获得最低电阻率 实验还研究石墨含量对环氧树脂复合导电材料的影响 ,发现复合材料具有渗滤效应 ,渗滤区石墨质量分数为 0 .0 2~ 0 .0 5 ,相应的电阻率约为 10 12 ~ 10 4Ω·cm .  相似文献   

14.
采用酮亚胺作为水汽潜伏型固化剂固化环氧树脂,制备了一种新型的单组分室温固化环氧树脂.实验结果表明这种新型树脂体系具有良好的储存稳定性和固化性能,并通过蒙特卡洛法分子模拟从理论上研究了其结构与性能之间的相互关系.  相似文献   

15.
一、前言环氧树脂在工业和民用乃至文物古迹的修复保护等方面都有广泛和重要的用途。其固化后产物的性能在很大程度上取决于固化剂。通常脂肪族多元胺,能在室温固化双酚A环氧树脂;而芳香族多元胺,却要高温才能实现固化反应。但固化产物的性能,后者往往优于前  相似文献   

16.
以环氧树脂E-51和热塑性丙烯酸树脂为原料,分别以二氨基二苯甲烷(DDM)、二乙烯三胺(DETA)、二氰二胺(DICY)为固化剂制备皱纹涂料,并用于涂布冷轧钢板。采用数显螺旋测微仪、超景深显微镜和扫描电子显微镜等对涂层进行表征,研究树脂配比、涂层厚度、固化剂种类以及固化温度对涂层褶皱的影响。结果表明,环氧树脂和丙烯酸树脂的配比为3∶2时,共混体系中能产生较多的双连续相结构,涂层起皱最明显,褶皱波长最大为1.726mm;在所设定的工艺条件下,涂层厚度和褶皱波长存在良好的线性关系;3种固化剂中,反应活性高的脂肪胺固化剂DETA更容易使涂层出现褶皱;涂层固化时产生褶皱需要高于一定的临界温度,环氧树脂和丙烯酸树脂的配比为1∶1、以DETA为固化剂的情况下,产生褶皱的临界固化温度为80℃。  相似文献   

17.
气相氨与环氧树脂进行固化反应并在工业上应用,国内外的文献中未见有报导。杭州油墨油漆厂于1968年10月在实验室中发现了气相氨可以固化环氧树脂的新现象,设想到新的固化剂和工艺技术有可能解决国内酒类食品的卫生防腐蚀难题,据此该厂探讨了气相氨与环氧树脂固化成膜机理,进行了气  相似文献   

18.
含磷多胺/环氧树脂的固化过程和阻燃性研究   总被引:2,自引:0,他引:2  
研究了含磷四乙烯五胺类固化剂/环氧树脂体系的固化过程。结果表明,上述体系的固化过程可分为3个主要阶段:第1阶段是伯胺基与环氧基加成反应;第2阶段是不活泼的伯胺基与环氧基的加成;第3阶段是羟基与环氧基的加成反应,文中还对含磷四乙烯五胺类固化剂/环氧树脂体系的阻燃性进行了研究。  相似文献   

19.
本文通过对已二胺进行改性反应,研制了一种透明环氧树脂室温固化剂,用于透明环氧树脂同化体系,使固化物具有透明度高,室温固化,柔韧性和粘接性均好的特性。可用于建筑装修装饰、铭牌商标、立体水晶化装饰等方面。  相似文献   

20.
陈兴娟 《应用科技》2001,28(4):35-36
采用苯甲酸铅做固化剂,通过对环氧树脂固化物的红外光谱及DSC曲线分析,认为苯甲酸铅是一种催化型固化剂,它与环氧树脂混合后首先形成过渡状态,然后按双分子亲核取代(SN2)机理进行开环反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号