首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对哈尔滨市大气环境中的PM10、PM2.5进行了采集,并对质量浓度及离子成分进行了分析.实验结果表明,两种颗粒物均呈现了先减小后增大的特征,最高值出现在1月,质量浓度分别是178.85、130.10μg/m3,PM10在1、2、3、4、11、12月均超标,而PM2.5质量浓度则高出欧盟标准(15μg/m3)的2~8倍,另外,离子总质量浓度在8月达到了最低值,分别是42.73μg/m3和25.3μg/m3.PM10和PM2.5中离子成分占颗粒物总质量的比例均表现为中间高两边低的特点,最高含量出现在7月份,分别为67.7%和68.4%.根据相关系数的判别原则,PM10中表现为高度负相关的离子是Ca2+和F-、Ca2+和SO42+、Ca2+和NO3-;表现为高度正相关的离子是K+和Mg2+、K+和Cl-、M2+和Cl-、F-和SO42+、F-和NO3-、SO42+和NO3-,说明上述离子间有相似的污染来源.PM2.5中表现为高度正相关的离子是K+和Cl-、K+和SO42+、K+和NO3-、Mg2+和SO42+、F-和NO3-、SO42+和NO3-,与PM10中离子相关性规律不同.  相似文献   

2.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO2-4、NO-3和NH+4,大部分以(NH4)2SO4和NH4NO3形式存在;NO-3和SO2-4质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

3.
为了解太原市PM10和PM2.5中重金属污染状况,采集了太原市春季环境空气中可吸入颗粒物(PM10)和细颗粒物(PM2.5)样品,利用等离子体发射光谱仪对样品中As和8种重金属(Mn,Cu,Zn,Pb,Cr,Ni,Co,Cd)的含量进行测定,并对As和重金属健康风险进行评价。结果显示:太原市PM10和PM2.5中均以Zn的质量浓度最大,分别为369.08ng/m3和271.74ng/m3;As的质量浓度相对较小,分别为3.41ng/m3和2.33ng/m3;各点位As、Cu、Zn、Pb、Cr和Cd元素主要显含在PM2.5中。PM10和PM2.5通过呼吸吸入途径产生的成人非致癌风险和致癌风险为儿童的3.98~4.00倍;非致癌风险总和(Hi)低于人体可接受的水平,不具有非致癌风险;PM2.5和PM10的致癌风险介于人体可接受范围,不具有致癌风险。各点位As和重金属在PM2.5和PM10中的非致癌风险比值PHi小于1;1号、3号点位致癌风险比值QR大于1,且对人体健康危害最严重的为可吸入颗粒物PM10,需引起高度重视。  相似文献   

4.
沌口地区为武汉经济技术开发区所在地。经过近20年的发展,武汉经济技术开发区已成为武汉经济发展的重要引擎之一。经济发展的同时,大气环境质量也日益引起人们的重视。用大气颗粒物采样器、PM10及PM2.5切割器采集沌口地区大气可吸入颗粒物,对其化学组分进行粗析定性识别其来源,进而为政府部门制定大气污染控制与治理措施、确定污染治理重点提供科学依据,为武汉两型社会建设做出贡献。  相似文献   

5.
人们每天2/3以上的时间在室内度过,室内空气中可吸入颗粒物对人体健康的影响越来越受到国内外研究人员的广泛关注.在我国,虽然人们对大气中细粒子的研究比较系统、深入,然而对室内环境中可吸入颗粒物的研究、报道却很少.作者在北京市的海淀区、朝阳区、丰台区和昌平区选择了19个家庭,分别对其厨房、客厅和卧室的室内空气中TSP,PM10,PM2.5和PM1的浓度进行了测定,并且对室内空气中粉尘含量的影响因素进行了分析和探讨.  相似文献   

6.
大气中PM_(10)浓度的影响因素及其污染变化特征分析   总被引:10,自引:0,他引:10       下载免费PDF全文
讨论了影响大气中可吸入颗粒物PM10浓度的因素,包括来源、源强、气象条件等,并分析了其时空分布特征.  相似文献   

7.
为了研究长春市PM10污染特征以及影响PM10浓度的因素,利用长春市PM10的实时监测资料,分析长春市PM10浓度的季节变化特征和污染程度.并利用同期的气象资料,建立PM10浓度和气象因素之间的多元线性回归模型,来进行两者之间的相关分析.采用逐步回归法,建立了"最优"回归方程,分析不同季节对污染物浓度有显著影响的气象因素,从而为长春市大气污染防治和雾霾天气预测提供科学依据.结果表明,长春市PM10浓度冬季偏高、夏季偏低、春季和秋季居中,2013年全年中1、4、10月份出现了不同程度的高污染现象,日平均浓度最高值达到591μg/m3.研究发现对长春市PM10有显著影响的气象因素主要有当日平均风速和最高最低气温温差.  相似文献   

8.
为了初步调查南宁市大气中颗粒物PMl0、PM2.5的污染水平 ,于2002年春、夏、秋、冬4季在南宁市的5个典型城市功能区 ,采集了85个样品.结果表明 ,南宁市PMl0、PM2.5 的污染很严重 ,超标率为82.5 %、92.5% ,而且对人体健康危害更大的PM2.5 占PM10 的大部分 ,约为63.5 % ,且重污染区PM2.5 浓度超过轻污染区近一倍 ,应引起公众和相关职能部门的高度重视.  相似文献   

9.
采用鲁米诺增强的化学发光法研究粉笔PM2.5/PM10诱导大鼠肺泡巨噬细胞(AMs)产生活性氧(ROS)和活性氮(RNS)的能力,并运用抗霉素A,超氧化物歧化酶(SOD),二苯基氯化碘盐(DPI)和左旋-N-硝基精氨酸甲酯(L-NAME)等抑制剂来确定ROS和RNS产生来源。结果发现粉笔PM2.5/PM10能诱导AMs产生化学发光,1mmol/L L-NAME可显著抑制粉笔PM2.5/PM10诱导AMs的化学发光。CaSO4/CaCO3PM2.5或PM10也可浓度依赖地诱导AMs产生化学发光,且CaSO4/CaCO3相同组分的颗粒粒径越小,诱导化学发光能力越强。CaCO3PM2.5或PM10诱导化学发光的能力远远强于同粒径CaSO4PM2.5或PM10,结果具有统计学意义。研究也发现,抗霉素A,SOD,DPI和L-NAME可显著抑制CaSO4/CaCO3PM2.5或PM10诱导AMs化学发光。这些结果提示粉笔诱导AMs生成的ROS可能源于细胞内NADPH氧化酶和线粒体complexⅢ,RNS则源于细胞内一氧化氮合酶激活。CaSO4和CaCO3是粉笔PM2.5/PM10诱导产生ROS/RNS的主要因素。  相似文献   

10.
目的研究宝鸡市城区采暖期和非采暖期PM10、PM2.5的质量浓度变化以及比例关系,为宝鸡的雾霾治理提供技术支撑。方法在宝鸡市环境监测中心站院子设点对PM10、PM2.5分别进行采暖期和非采暖期2个时段对比监测,结合气象条件进行分析,总结规律。结果在一般气象条件下PM2.5、PM10质量浓度采暖期高于非采暖期,昼间大于夜间,但细粒子在大气中漂浮时间长,昼夜变化幅度小于可吸入颗粒物。两种颗粒物浓度受气象条件影响较大,阴天浓度明显大于晴天。结论总结了不同时段PM10、PM2.5质量浓度和二者比例关系,为以后的研究和环境管理提供参考。  相似文献   

11.
在相同的环境条件下比较了β射线法、微振荡天平法、β射线-光散射融合法和手工滤膜采样-称重法测定环境空气中PM_(2.5)的方法,实验结果表明,β射线-光散射融合法在PM_(2.5)浓度较低时准确度较好,浓度较高时准确度较差。经过比较,β射线法、微振荡天平法能够满足环境质量细颗粒物的测定要求。  相似文献   

12.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m^3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m^3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO4^2-、NO3^-和NH4^+,大部分以(NH4)2SO4和NH4NO3形式存在;NO3^-和SO4^2-质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

13.
基于西安市2001—2012年可吸入颗粒物PM10浓度时间序列数据,利用Morlet小波分析方法,研究了PM10浓度数据的多时间尺度变化,并利用主成分分析方法研究了PM10浓度和气象因素的相关性。研究结果表明,污染物浓度变化受采暖期周期影响,主要受采暖期燃煤量和气温的影响,与大气压强、平均气温和PM10等第一主成分具有高相关性。  相似文献   

14.
以武汉市PM10空气污染指数时间序列为例,运用复Morlet小波进行了时间尺度分析,发现其具备340 d、180 d、50 d和18 d 4个变化尺度,尤其以340 d的尺度最为明显;运用db小波对研究对象的突变事件进行分析,同时结合气象资料对各季节的PM10突变事件分析,结果表明PM10污染事件多发生在春季和冬季,其成因与当时的气象条件有密切联系.  相似文献   

15.
测定了武汉经济技术开发区冬季大气中PM_(2.5)的质量浓度,并用IC和XRF技术对PM_(2.5)中的几种水溶性阴离子和无机元素进行了测定和分析。结果显示:监测周期内,武汉经济技术开发区冬季空气中PM_(2.5)的浓度范围是26.00~321.28μg/m~3,平均值为158.78μg/m~3,大大超过PM_(2.5)的国家空气质量二级标准限值(75μg/m~3);水溶性阴离子是PM_(2.5)的重要组分,PM_(2.5)中4种水溶性阴离子浓度大小顺序为NO_3~->SO_4~(2-)>F~->Cl~-,4种离子总和占PM_(2.5)总量的36.85%,13种无机元素总和占PM_(2.5)总量的25.08%;PM_(2.5)中NO_3~-与SO_4~(2-)的平均比值为1.22,NO_3~-与SO_4~(2-)的相关系数高达0.957 1,表明两者有一定的同源性,同时也说明武汉经济技术开发区冬季大气污染中移动源的贡献大于固定源;元素富集因子分析显示,Ti、Cr、Ni、Zn、As富集程度较高,富集因子均大于10,Ni富集因子大于1 000,Fe和Ni、Fe和Cr的相关系数分别是0.833和0.846,表明这些元素主要受人为污染源的影响。  相似文献   

16.
利用电脑微激光粉尘仪对西安市南二环2013年春季5月70 m高度范围内的可吸入颗粒物(PM_(10))质量浓度进行了4个昼夜的监测。观测发现,西安南二环PM_(10)质量浓度昼夜变化可分为5个阶段:第1阶段在8:00—10:00,PM_(10)平均质量浓度范围0.056 mg/m~3;第2阶段在12:00—14:00,PM_(10)平均质量浓度为0.075 mg/m~3;第3阶段在16:00—18:00,PM_(10)平均质量浓度为0.058 mg/m~3;第4阶段在20:00—22:00,PM_(10)平均质量浓度为0.070 mg/m~3;第5阶段在0:00—6:00,PM_(10)平均质量浓度为0.038 mg/m~3。高分辨率地垂向观测结果表明,西安5月PM_(10)质量浓度垂向变化可分为3种类型:第1种类型,随着高度的增加PM_(10)质量浓度增加幅度居中,平均递增率为0.048μg/m;第2种类型,随着高度的增加PM_(10)质量浓度幅度增加最大,递增率为0.065μg/m,且波动变化明显;第3种类型,随着高度的增加PM_(10)质量浓度增加幅度最小,递增率为0.013μg/m。西安南二环5月PM_(10)质量浓度在1 m高度处最低,平均为0.048 mg/m~3;4~46 m高度范围内质量浓度较低,平均为0.051 mg/m~3;在49~67m高度范围内质量浓度较高,平均为0.052 mg/m~3;在70m处最高,平均为0.056 mg/m~3。观测期间PM_(10)质量浓度与4 m处的温度之间为显著正相关(y=240.73x+12.305),与4、7、10 m高度处的湿度为显著负相关(y=-606.42x+82.08)。  相似文献   

17.
分别在佛山市城区有代表性的季华路(主干道)、同济路(次干道)、华远西路(支路)路边,采集了PM2.5样品,并分析了样品中12种金属元素和9种水溶性离子的含量。结果表明:佛山市城区各道路环境PM2.5日均浓度的由大到小依次为:季华路(173.3μg/m3)、同济路(141.2μg/m3)、华远西路(126.0μg/m3),与车流量之间具有显著的正相关关系,且均高于同期城区PM2.5的日均浓度64.5μg/m3。3个采样点检出金属元素中含量较高的是Fe、Al、Ca、Mg,其次是Zn和Pb。不同道路环境中Al、Ca、Mg、Zn和Pb元素的浓度由大到小均依次为:季华路、同济路、华远西路。富集因子分析表明佛山市城区道路环境人为污染较严重的金属元素为Cd、Zn、Pb、As。采样期间SO42-、NO3-和NH4+是主要的水溶性离子。  相似文献   

18.
选择福建省龙岩市环境监测站的大气常规监测点位为采样点, 于2009年9月16日至9月23日进行24 h连续采样, 采用扫描电镜方法分析样品中PM10的微观形貌特征和元素组成, 通过与当地典型污染源颗粒物的微观形貌和特征元素进行对比, 确定其主要污染来源. 研究结果表明: 各类污染源的微观形貌及特征元素均有明显区别,  不同采样点样品中PM10的微观形貌特征及元素组成也有差异, 据此分析得出的大气PM10颗粒物来源与化学质量平衡受体模型(CMB8.2)源解析结果一致.  相似文献   

19.
为了研究对比北京、伊斯兰堡冬季PM10中重金属、水溶性无机离子以及碳组分的污染特征,于2014年12月—2015年1月分别在两地每天采集1次PM10样品,对大气颗粒物中以上3种物质的质量浓度进行了分析。结果表明,两地PM10中重金属污染情况较为严重,北京地区的As、Cr(Ⅵ)以及伊斯兰堡的Cd、Cr(Ⅵ)均超过WHO标准。根据主成分分析,北京重金属主要排放源为燃煤和移动源,而伊斯兰堡主要为移动源。两地颗粒物中水溶性无机离子二次污染情况较为严重,在霾天浓度也同样会上升,虽然污染程度不同,但造成霾天污染的一个重要原因均为机动车等移动源。对于碳组分,北京OC、EC线性关系较好(特别是在非霾天),说明其来源比较相似和简单,在排放后被类似的过程所控制,主要为煤炭燃烧和汽车排放;而伊斯兰堡OC、EC线性关系较差,在非霾天甚至出现负相关,说明其来源差别较大,主要为汽车排放。北京地区在研究期间SOC的质量浓度为2.58 μg/m3,仅占OC质量浓度的10.1%,而伊斯兰堡基本没有SOC的生成。  相似文献   

20.
通过合理布置采样点,对兰州市2013年和2014年供暖前中后大气污染物PM_(10)中8种重金属As、Hg、Pb、Cd、Cr、Zn、Ni、Cu含量进行监测,并与PM_(10)含量进行对比分析,得出PM_(10)中重金属的分布规律、PM_(10)与重金属分布规律之间的关系,以便了解供暖期间产生的废气和烟尘对兰州大气环境PM_(10)中重金属分布规律的影响。结果表明在兰州市2013-2014年供暖前中后,大气污染物PM_(10)中重金属含量变动情况均较为明显,供暖期铅、镉、铬、铜的污染较大,且城关区Cr和Pb污染大于安宁区;供暖前中后PM_(10)中权重较大的重金属元素类别有所区别,但3个采样期Ni都占有较大的权重,As、Hg都占有较小的权重,说明PM_(10)受Ni影响较大,几乎不受As、Hg的影响;PM_(10)含量增大或减少时,附着在其上的重金属含量并未随之增大或减少。上述结果为改善兰州市供暖环境和治理大气污染提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号