首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triggering of earthquake aftershocks by dynamic stresses   总被引:20,自引:0,他引:20  
Kilb D  Gomberg J  Bodin P 《Nature》2000,408(6812):570-574
It is thought that small 'static' stress changes due to permanent fault displacement can alter the likelihood of, or trigger, earthquakes on nearby faults. Many studies of triggering in the near-field, particularly of aftershocks, rely on these static changes as the triggering agent and consider them only in terms of equivalent changes in the applied load on the fault. Here we report a comparison of the aftershock pattern of the moment magnitude Mw = 7.3 Landers earthquake, not only with static stress changes but also with transient, oscillatory stress changes transmitted as seismic waves (that is, 'dynamic' stresses). Dynamic stresses do not permanently change the applied load and thus can trigger earthquakes only by altering the mechanical state or properties of the fault zone. These dynamically weakened faults may fail after the seismic waves have passed by, and might even cause earthquakes that would not otherwise have occurred. We find similar asymmetries in the aftershock and dynamic stress patterns, the latter being due to rupture propagation, whereas the static stress changes lack this asymmetry. Previous studies have shown that dynamic stresses can promote failure at remote distances, but here we show that they can also do so nearby.  相似文献   

2.
Remote triggering of deep earthquakes in the 2002 Tonga sequences   总被引:1,自引:0,他引:1  
Tibi R  Wiens DA  Inoue H 《Nature》2003,424(6951):921-925
It is well established that an earthquake in the Earth's crust can trigger subsequent earthquakes, but such triggering has not been documented for deeper earthquakes. Models for shallow fault interactions suggest that static (permanent) stress changes can trigger nearby earthquakes, within a few fault lengths from the causative earthquake, whereas dynamic (transient) stresses carried by seismic waves may trigger earthquakes both nearby and at remote distances. Here we present a detailed analysis of the 19 August 2002 Tonga deep earthquake sequences and show evidence for both static and dynamic triggering. Seven minutes after a magnitude 7.6 earthquake occurred at a depth of 598 km, a magnitude 7.7 earthquake (664 km depth) occurred 300 km away, in a previously aseismic region. We found that nearby aftershocks of the first mainshock are preferentially located in regions where static stresses are predicted to have been enhanced by the mainshock. But the second mainshock and other triggered events are located at larger distances where static stress increases should be negligible, thus suggesting dynamic triggering. The origin times of the triggered events do not correspond to arrival times of the main seismic waves from the mainshocks and the dynamically triggered earthquakes frequently occur in aseismic regions below or adjacent to the seismic zone. We propose that these events are triggered by transient effects in regions near criticality, but where earthquakes have difficulty nucleating without external influences.  相似文献   

3.
Richards-Dinger K  Stein RS  Toda S 《Nature》2010,467(7315):583-586
Resolving whether static or dynamic stress triggers most aftershocks and subsequent mainshocks is essential to understand earthquake interaction and to forecast seismic hazard. Felzer and Brodsky examined the distance distribution of earthquakes occurring in the first five minutes after 2?≤?M?相似文献   

4.
Aftershocks driven by a high-pressure CO2 source at depth   总被引:2,自引:0,他引:2  
Miller SA  Collettini C  Chiaraluce L  Cocco M  Barchi M  Kaus BJ 《Nature》2004,427(6976):724-727
In northern Italy in 1997, two earthquakes of magnitudes 5.7 and 6 (separated by nine hours) marked the beginning of a sequence that lasted more than 30 days, with thousands of aftershocks including four additional events with magnitudes between 5 and 6. This normal-faulting sequence is not well explained with models of elastic stress transfer, particularly the persistence of hanging-wall seismicity that included two events with magnitudes greater than 5. Here we show that this sequence may have been driven by a fluid pressure pulse generated from the coseismic release of a known deep source of trapped high-pressure carbon dioxide (CO2). We find a strong correlation between the high-pressure front and the aftershock hypocentres over a two-week period, using precise hypocentre locations and a simple model of nonlinear diffusion. The triggering amplitude (10-20 MPa) of the pressure pulse overwhelms the typical (0.1-0.2 MPa) range from stress changes in the usual stress triggering models. We propose that aftershocks of large earthquakes in such geologic environments may be driven by the coseismic release of trapped, high-pressure fluids propagating through damaged zones created by the mainshock. This may provide a link between earthquakes, aftershocks, crust/mantle degassing and earthquake-triggered large-scale fluid flow.  相似文献   

5.
Mueller K  Hough SE  Bilham R 《Nature》2004,429(6989):284-288
Although dynamic stress changes associated with the passage of seismic waves are thought to trigger earthquakes at great distances, more than 60 per cent of all aftershocks appear to be triggered by static stress changes within two rupture lengths of a mainshock. The observed distribution of aftershocks may thus be used to infer details of mainshock rupture geometry. Aftershocks following large mid-continental earthquakes, where background stressing rates are low, are known to persist for centuries, and models based on rate-and-state friction laws provide theoretical support for this inference. Most past studies of the New Madrid earthquake sequence have indeed assumed ongoing microseismicity to be a continuing aftershock sequence. Here we use instrumentally recorded aftershock locations and models of elastic stress change to develop a kinematically consistent rupture scenario for three of the four largest earthquakes of the 1811-1812 New Madrid sequence. Our results suggest that these three events occurred on two contiguous faults, producing lobes of increased stress near fault intersections and end points, in areas where present-day microearthquakes have been hitherto interpreted as evidence of primary mainshock rupture. We infer that the remaining New Madrid mainshock may have occurred more than 200 km north of this region in the Wabash Valley of southern Indiana and Illinois--an area that contains abundant modern microseismicity, and where substantial liquefaction was documented by historic accounts. Our results suggest that future large mid-plate earthquake sequences may extend over a much broader region than previously suspected.  相似文献   

6.
采用已公布的1个前震和3个主震震源可变滑动模型,计算了日本Mw7.3级前震、M_w9.0级主震产生的同震库仑应力变化,并采用哈佛Global CMT和日本F-net余震目录,在不同有效摩擦系数取值下计算了主震对余震的触发效应,分析了应力空间分布与余震活动空间分布的相关性。研究表明,日本地震前震对主震有触发作用,前震在主震处产生的正应力变化为0.404 bar,剪应力变化0.282 bar,同震库仑应力变化为0.517 bar,应力变化超过了应力触发阈值0.1 bar,达5倍之多,属于典型的地震应力触发,而非诱发事件。主震对后续余震有触发效应,最小触发率为57%,最大达到75%。余震多分布在主震产生的同震库仑应力红色加载区。同时,分析了可变滑动模型、有效摩擦系数、余震目录、震级及节面选取等对计算结果的影响。可变滑动模型、有效摩擦系数变化对计算结果影响不大,余震目录、震级及节面选取对结果有一定影响,尤其是当余震目录足够多、震级足够大时,计算结果更加可靠。为了深入讨论节面选取对计算结果的影响,对余震两个节面上库仑应力、剪切应力及正应力变化差值进行了频次统计。分析显示节面选取对正应力有一定影响,而对库仑应力及剪应力影响不大。  相似文献   

7.
Johnson PA  Savage H  Knuth M  Gomberg J  Marone C 《Nature》2008,451(7174):57-60
It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence.  相似文献   

8.
Toda S  Stein RS  Sagiya T 《Nature》2002,419(6902):58-61
Magma intrusions and eruptions commonly produce abrupt changes in seismicity far from magma conduits that cannot be associated with the diffusion of pore fluids or heat. Such 'swarm' seismicity also migrates with time, and often exhibits a 'dog-bone'-shaped distribution. The largest earthquakes in swarms produce aftershocks that obey an Omori-type (exponential) temporal decay, but the duration of the aftershock sequences is drastically reduced, relative to normal earthquake activity. Here we use one of the most energetic swarms ever recorded to study the dependence of these properties on the stress imparted by a magma intrusion. A 1,000-fold increase in seismicity rate and a 1,000-fold decrease in aftershock duration occurred during the two-month-long dyke intrusion. We find that the seismicity rate is proportional to the calculated stressing rate, and that the duration of aftershock sequences is inversely proportional to the stressing rate. This behaviour is in accord with a laboratory-based rate/state constitutive law, suggesting an explanation for the occurrence of earthquake swarms. Any sustained increase in stressing rate--whether due to an intrusion, extrusion or creep event--should produce such seismological behaviour.  相似文献   

9.
Based on the published focal mechanisms we have built the fault model of the main shocks of the 1976 Songpan earthquake sequence and calculated the coseismic Coulomb stress changes in the region. The results show that most of the aftershocks had occurred in the region where the Coulomb stresses had been increased, indicating a triggering relationship between the main shocks and the aftershocks. We also show that the first main shock (Ms = 7.2), which is a left-lateral slip event, had increased the Coulomb stresses by 5×10^5 Pa at the second main shock (a thrust event with Ms = 6.7). Therefore, we conclude that the first main shock had triggered the second main shock. The third main shock is also a left-lateral event, however, the triggering relationship between the third main shock and the previous two events is less obvious. General model calculations show that there is a good triggering relationship between adjacent left-lateral slip fault and thrust fault, but triggering between parallel slip faults is rather weak.  相似文献   

10.
Post-earthquake ground movements correlated to pore-pressure transients   总被引:7,自引:0,他引:7  
Jónsson S  Segall P  Pedersen R  Björnsson G 《Nature》2003,424(6945):179-183
Large earthquakes alter the stress in the surrounding crust, leading to triggered earthquakes and aftershocks. A number of time-dependent processes, including afterslip, pore-fluid flow and viscous relaxation of the lower crust and upper mantle, further modify the stress and pore pressure near the fault, and hence the tendency for triggered earthquakes. It has proved difficult, however, to distinguish between these processes on the basis of direct field observations, despite considerable effort. Here we present a unique combination of measurements consisting of satellite radar interferograms and water-level changes in geothermal wells following two magnitude-6.5 earthquakes in the south Iceland seismic zone. The deformation recorded in the interferograms cannot be explained by either afterslip or visco-elastic relaxation, but is consistent with rebound of a porous elastic material in the first 1-2 months following the earthquakes. This interpretation is confirmed by direct measurements which show rapid (1-2-month) recovery of the earthquake-induced water-level changes. In contrast, the duration of the aftershock sequence is projected to be approximately 3.5 years, suggesting that pore-fluid flow does not control aftershock duration. But because the surface strains are dominated by pore-pressure changes in the shallow crust, we cannot rule out a longer pore-pressure transient at the depth of the aftershocks. The aftershock duration is consistent with models of seismicity rate variations based on rate- and state-dependent friction laws.  相似文献   

11.
Gomberg J  Reasenberg PA  Bodin P  Harris RA 《Nature》2001,411(6836):462-466
The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake. Here we quantify the spatial and temporal patterns of the seismicity rate changes. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.  相似文献   

12.
Gomberg J  Bodin P  Larson K  Dragert H 《Nature》2004,427(6975):621-624
The permanent and dynamic (transient) stress changes inferred to trigger earthquakes are usually orders of magnitude smaller than the stresses relaxed by the earthquakes themselves, implying that triggering occurs on critically stressed faults. Triggered seismicity rate increases may therefore be most likely to occur in areas where loading rates are highest and elevated pore pressures, perhaps facilitated by high-temperature fluids, reduce frictional stresses and promote failure. Here we show that the 2002 magnitude M = 7.9 Denali, Alaska, earthquake triggered widespread seismicity rate increases throughout British Columbia and into the western United States. Dynamic triggering by seismic waves should be enhanced in directions where rupture directivity focuses radiated energy, and we verify this using seismic and new high-sample GPS recordings of the Denali mainshock. These observations are comparable in scale only to the triggering caused by the 1992 M = 7.4 Landers, California, earthquake, and demonstrate that Landers triggering did not reflect some peculiarity of the region or the earthquake. However, the rate increases triggered by the Denali earthquake occurred in areas not obviously tectonically active, implying that even in areas of low ambient stressing rates, faults may still be critically stressed and that dynamic triggering may be ubiquitous and unpredictable.  相似文献   

13.
Gomberg J  Johnson P 《Nature》2005,437(7060):830
After an earthquake, numerous smaller shocks are triggered over distances comparable to the dimensions of the mainshock fault rupture, although they are rare at larger distances. Here we analyse the scaling of dynamic deformations (the stresses and strains associated with seismic waves) with distance from, and magnitude of, their triggering earthquake, and show that they can cause further earthquakes at any distance if their amplitude exceeds several microstrain, regardless of their frequency content. These triggering requirements are remarkably similar to those measured in the laboratory for inducing dynamic elastic nonlinear behaviour, which suggests that the underlying physics is similar.  相似文献   

14.
Nonlinear dynamics, granular media and dynamic earthquake triggering   总被引:1,自引:0,他引:1  
Johnson PA  Jia X 《Nature》2005,437(7060):871-874
The 1992 magnitude 7.3 Landers earthquake triggered an exceptional number of additional earthquakes within California and as far north as Yellowstone and Montana. Since this observation, other large earthquakes have been shown to induce dynamic triggering at remote distances--for example, after the 1999 magnitude 7.1 Hector Mine and the 2002 magnitude 7.9 Denali earthquakes--and in the near-field as aftershocks. The physical origin of dynamic triggering, however, remains one of the least understood aspects of earthquake nucleation. The dynamic strain amplitudes from a large earthquake are exceedingly small once the waves have propagated more than several fault radii. For example, a strain wave amplitude of 10(-6) and wavelength 1 m corresponds to a displacement amplitude of about 10(-7) m. Here we show that the dynamic, elastic-nonlinear behaviour of fault gouge perturbed by a seismic wave may trigger earthquakes, even with such small strains. We base our hypothesis on recent laboratory dynamic experiments conducted in granular media, a fault gouge surrogate. From these we infer that, if the fault is weak, seismic waves cause the fault core modulus to decrease abruptly and weaken further. If the fault is already near failure, this process could therefore induce fault slip.  相似文献   

15.
采用弹簧-滑块断层运动模型和速率-状态依赖摩擦本构关系,用数值模拟方法,模拟计算研究了构造应力加载速度、静态和动态应力扰动对断层黏滑运动的影响.结果显示,当模拟构造应力加载速度v0幅度增大时,断层的摩擦滑动由稳滑形式逐渐向黏滑运动形式转变;模拟静态应力扰动的正应力阶幅度的大小对断层黏滑出现的时间、黏滑应力降的幅度和黏滑运动周期均有较明显的影响;当断层受到方波形式的正应力扰动时,无论是应力扰动的波峰阶段还是波谷阶段,均出现了断层黏滑运动.  相似文献   

16.
The mainshock of April 20, 2013 Sichuan Lushan M S7.0 earthquake was relocated using a 3-D velocity model. Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake. The locations of 2405 aftershocks were determined. The location errors in E-W, N-S and U-D direction were 0.30, 0.29 and 0.59 km on average, respectively. The location of the mainshock is 102.983°E, 30.291°N and the focal depth is 17.6 km. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth profiles show fault planes dip to the northwest, manifested itself as a listric thrust fault. The dip angle is steep in the shallow crust and gentle in the deep crust. Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault, the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We speculate it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.  相似文献   

17.
东北太平哨和云峰砼重力坝已分别运行十余年和二十余年,需进行安全检查与评价.本文首先介绍了现场动力试验和自振特性及地震动应力分析结果.对云峰宽缝重力坝进行了抗滑稳定复核,静力和温度应力计算,并研究了基础岩石裂缝、扬压力、上游库区水压力及材料弹模对应力状态的影响。  相似文献   

18.
地层条件下岩石动静力学参数的实验研究   总被引:1,自引:0,他引:1  
在实际地层三轴应力和温度条件下 ,测量了 CX地区地表至 50 0 0 m深度砂、泥岩样品的静力学参数。对其中大部分样品进行了岩石力学和声波速度 (v P,v S)的同步测试 ,由此获得了在相同应力和温度条件下岩石的动、静力学参数。根据实验结果 ,讨论了在实际埋深条件下CX地区砂、泥岩的静力学参数、波速及动力学参数的变化特征 ,以及岩石动、静力学参数间的关系。  相似文献   

19.
静定混凝土梁在日照温度作用下应力的级数解   总被引:1,自引:0,他引:1  
温度变化是混凝土梁的作用之一.在温度作用下,若混凝土中的温度变化是非均匀的,则虽然静定混凝土梁横戴面上的内力为零,但仍然会在结构中产生温度应力.本文采用弹性力学方法,视静定梁为平面应力问题,将应力函数取为三角级数,计算了静定梁在一般温度分布时的应力.然后取日照温度变化.T(x,y)=Toe^-kty,确定了好定混凝土梁温度应力的级数解.  相似文献   

20.
混流式转轮静强度和振动特性分析   总被引:4,自引:0,他引:4  
为大型水轮机组的安全、稳定运行,研究了转轮在水介质中的动力特性。运用顺序耦合的方法,分析了在三维旋转流动所产生的水压力作用下转轮体的静强度特性;运用全流固耦合的三维有限元方法进行了转轮在水介质中的模态分析。强度分析结果表明,应力集中的部位与裂纹实际产生的位置完全吻合,但最大等效应力远小于材料的极限破坏应力;模态分析得到转轮在水中的自振频率和振型等振动特性,指出了发生共振的可能性。结果证实了导致裂纹产生的原因不是静应力而是动载荷的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号