首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用多靶磁控溅射仪在室温和衬底温度为300 ℃的条件下制备Tb/Fe/Dy纳米多层膜,研究其磁性能和超磁致伸缩性能.结果表明该纳米多层膜较TbDyFe单层膜有更明显的垂直磁各向异性和更大的矫顽力.尽管纳米多层膜样品具有垂直各向异性,但仍具有超磁致伸缩性能.特别是衬底温度为300 ℃的纳米多层膜样品,具有Laves相结构的TbDyFe纳米晶体析出,使得低磁场下磁致伸缩性能有了显著的提高.  相似文献   

2.
We have investigated the effects of high magnetic fields on the microstructures and magnetic properties of Fe-Si-O films deposited by RF sputtering. Three typical sample appearances, hole-in-center, phase-separation and hybridization were obtained for the Fe-Si-O films prepared in the oxygen-argon flow ratio VO2/Vtotal<1.0%, magnetic field Bappl≤1.0 T regime, indicating that not only the distribution of plasma but also the angular distribution of sputtered atoms are influenced by a high magnetic field. In the oxygen-argon flow ratio VO2/Vtotal>2.0%, magnetic field Bappl≥2.0 T regime, strong (110) orientation of Fe3O4 grains and larger remanence and coercivity measured in the direction normal to the film plane appeared in the Fe-Si-O films. This result indicates that the high magnetic fields not only orient the Fe-Si-O film but also induce remarkable perpendicular magnetic anisotropy during the deposition.  相似文献   

3.
In this study, β-Cu2+xSe/SiC nano-multilayer films with different modulation period were successfully deposited on SiO2/Si substrates by sputtering alternately using Cu–Se and SiC targets. The deposited films were observed on both surface and cross-section, and the thermoelectric properties were studied. The results show that both carrier concentration and mobility at room temperature decreased with the reducing modulation period for the nano-multilayer films. The conductivity slightly decreased and Seebeck coefficient greatly increased with the reducing modulation period. As a result of competition, the power factor of the nano multilayer films increased with the reducing modulation period because the positive effect of the Seebeck coefficient exceeded the negative effect of the conductivity. In the case of β-Cu2+xSe/SiC nano multilayer film with the smallest modulation periods (210 ?nm), the power factor reached 0.39 ?mWm?1K?2 and 0.59 ?mWm?1K?2 at room temperature and 325 ?°C, respectively. The enhanced power factor for nano multilayer films is attributed to the scattering process at the β-Cu2+xSe/SiC layer interface, which reduces the carrier concentration and the mobility. It is concluded that the thermoelectric properties of β-Cu2+xSe films can be effectively improved by designing nano multilayer structure.  相似文献   

4.
Using (Ti(OC4H9)4) and metal chlorates as starting materials, CoFe2O4/TiO2 composite films were prepared by sol-gel method. The effects of heat treatment temperature and pH of the precursor on microstructure and magnetic properties were studied. The phase structure of the samples was examined by X-ray diffraction. The microstructure was examined by scanning electron microscope, atomic force microscope and polarized microscope. The magnetic property was measured by vibrating sample magnetometer. The results show that the crystals of different phases grow up independently. CoFe2O4 is uniformly embedded into the TiO2 matrix in the prepared composite films, and the growth of composite films is dependent on the heat treatment temperatures and PH of the precursor. The average size of CoFe2O4 crystal is 19 nm in Nanocomposite film prepared when the heat treatment temperature is 800℃ and the pH of the precursor is between 2 and 3. The magnetism of the composite films is enhanced as the heat treatment temperature increases.  相似文献   

5.
The magnetic force microscopy and a sample vibrating magnetometer have been used to investigate the domain structure in two antiferromagnetically coupled Co/Pt multilayers. In the antiferromagnetic coupled [Pt(0.5 nm)/Co(0.4 nm)]n /NiO(1.1 nm)/[Co(0.4 nm)/Pt(0.5 nm)]n multilayers with perpendicular anisotropy, the antiferromagnetic interlayer coupling strength increases linearly with the repetition number n in Co/Pt multilayers. In demagnetized states, relatively shifted domain walls in the two Co/Pt multilayers are observed, with net ferromagnetic stripes formed between them for the repetition number n less than 5, and the stripe width decreases with the increase of n. The occurrence of these features can be attributed to the competition between the interlayer coupling and magnetostatic energies.  相似文献   

6.
在Nd2Fe14B稀土永磁体基体表面,采用磁控溅射(直流+射频)技术制备了Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜和Ti/Al/Ni三元合金薄膜。并通过中性盐雾试验、腐蚀失重计算、电化学腐蚀试验、金相观察等方式,对比研究了不同表面处理对Nd2Fe14B稀土永磁体基体抗腐蚀性能的影响,并构建了腐蚀模型。研究发现:Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜和Ti/Al/Ni三元合金薄膜均有效地提高了Nd2Fe14B稀土永磁体基体耐中性盐雾腐蚀和电化学腐蚀的能力;Ti/Al/Ni三元合金薄膜较Ti/Ni,Ti/Al和Al/Ni等二元合金薄膜有更优良的综合耐腐蚀性能,其磁控溅射工艺参数为:Ar流量60 sccm,基片温度常温,Ni,Al,Ti的溅射功率都为250 W,基片转速20 r·min-1,镀膜均速0.3 nm·s-1,总计溅射时间1 h。  相似文献   

7.
采用反应磁控溅射方法,在不同沉积温度条件下制备了一系列多晶TiN/SiNx纳米多层膜,并用X射线衍射仪(XRD)、X射线反射仪(XRR)及纳米压痕仪(Nanoindenter)表征了材料的微观结构及力学性能。结果表明,沉积温度对多层膜的界面结构、择优取向及力学性能有显著影响:当沉积温度为室温时,多层膜的界面较高温条件下粗糙;而多层膜的择优取向在沉积温度为400℃时呈现强烈的TiN(200)织构;多层膜的硬度及弹性模量在室温至400℃温度范围内变化不大。  相似文献   

8.
Tensile-strained epitaxial La0.67Ba0.33MnO3 (LBMO) film has been prepared by magnetron sputtering technique on (001) oriented spinel MgAl2O4 substrate. The transport and magnetic measurements give an insulator-metal transition and paramagnetic-ferromagnetic transition occurring at ~150 K and 250 K respectively, which implies the phase separation in such a tensile-strained film. By analyzing the angular and temperature dependences of the ferromagnetic resonance (FMR), we determine the magnetocrystalline anisotropy of the film. It is found that the tensile-strained film is dominated by an easy-axis corresponding to the compressive out-of-plane direction, though the magnitudes of anisotropy constants are relatively small and their temperature dependences are some complex. Furthermore, the FMR spectra show additional spin wave resonance (SWR), and the field positions can be indexed to follow a linear dependence on the square of index n. The scaling gives a spin-wave exchange stiffness D of 20.7 meV Å2 at low temperature, which is less than half of that in strain-free LBMO films, implying that the double exchange interaction is remarkably suppressed in the tensile-strained LBMO films.  相似文献   

9.
In this paper, ZnO films are deposited on freestanding thick diamond films (FTDF) by plasma-assisted metal organic chemical vapour deposition (MOCVD). Diethyl zinc (DEZn), O2 and N2O are applied as precursors and different substrate temperatures are used to achieve high quality ZnO films. The influence of substrate temperature on the properties of ZnO films is systematically investigated by X-ray diffraction (XRD), Hall measurements and electron probe microanalysis (EPMA). Experimental results demonstrate that ZnO films deposited at 600℃ and 73 Pa display a fine electrical quality and Zn/O atomic ratio plays an important role in the electrical property of ZnO films.  相似文献   

10.
Ba(Fe1/2Nb1/2)O3 thin films were grown on Pt/TiO2/SiO2/Si substrates with pulsed laser deposition (PLD) at temperatures ranging from 823 to 923 K with the varied ambient oxygen pressure. X-ray diffraction (XRD) data confirmed the single phase of polycrystalline Ba(Fe1/2Nb1/2)O3 thin films. The effects of substrate temperature and ambient oxygen pressure on the surface morphologies of the thin films were investigated by atomic force microscopy (AFM) and the growth dynamics of thin films was discussed. Larger grains and denser surface morphologies were observed with increasing substrate temperature. While finer grains were produced with increasing ambient oxygen pressure due to more frequent collisions between the ejected species and ambient oxygen molecules. The influence of the substrate temperature and ambient oxygen pressure on the dielectric properties was also discussed. Improved dielectric constant and decreased dielectric loss was observed for the thin film deposited at evaluated temperature.  相似文献   

11.
【目的】通过固相反应法制备La_(0.7)Ce_xBa_(0.3-x)MnO_3(x=0,0.05,0.10,0.15,0.20)的钙钛矿锰氧化物,研究Ce元素的不同掺杂量对原体系磁热性能的影响。通过Ce元素的掺杂,来调节原体系过高的居里温度以及改善体系的磁热性能。【方法】通过X射线粉末衍射的方式确定其单相结构,并使用振动样品磁强计对钙钛矿样品进行磁性能的测试。【结果】La0.7CexBa0.3-xMnO3(x=0,0.05,0.10,0.15,0.20)的居里温度分别为342.1K,319.8K,270.0K,244.3K和199.7K。在0~2T的外磁场下,该体系的最大磁熵变分别为2.54J/(kg·K),2.32J/(kg·K),2.51J/(kg·K),2.03J/(kg·K)和1.87J/(kg·K),且最大磁熵变都在居里温度附近。【结论】随着Ce元素掺杂量的增加,化合物居里温度逐渐降低;而最大磁熵变则呈先减小后增大又减小的趋势。同时由Arrott曲线判断这5个样品的相变都是二级相变。当Ce元素的掺杂量为0.05~0.10时,该体系的居里温度在室温附近,且最大磁熵变仍保持较大的值。  相似文献   

12.
采用化学溶液沉积法在ITO基片上制备不同退火温度的掺镧钛酸铋Bi1.6La0.4Ti2O7(BLT)薄膜。研究了其结构、介电性能、漏电流密度与外加电压I-V关系曲线和光学带隙。XRD射线衍射测试结果表明,经500、550、600℃1 h退火后的薄膜的主晶相为烧绿石结构,无杂相生成,600℃时BLT薄膜衍射峰比其他两种温度的强。在1 kHz频率下测得的介电常数、损耗因子分别为114,3%;129,3%;194,6%。BLT薄膜的漏电流密度与外加电压关系曲线表明,BLT薄膜600℃的漏电流比550和500℃稍微减小。通过透射谱分析得到BLT薄膜的光学带隙几乎不受温度影响,均为3.7 eV。这些结果表明制备BLT固溶体薄膜较佳为退火温度600℃,具有较好的性能,在光电器件有良好的应用前景。  相似文献   

13.
Co/AlO/FeNi三层膜的磁结构特性   总被引:1,自引:0,他引:1  
利用多靶离子束溅射配合振动样品磁性分析技术对Co/AlO/FeNi纳米三层膜进行了分步制备与磁特性研究.分析结果表明,Co膜与FeNi膜的层间耦合强度及类型取决于中间隔离层(铝膜或氧化铝膜)的性能和厚度;垂直样品膜平面的电流输运机制源于电子隧穿和自旋电子流对铁磁层局域磁矩的作用.  相似文献   

14.
采用直流磁控溅射方法, 以Ar/N2为放电气体(N2/(Ar+N2)=10%), 在玻璃和NaCl(100)单晶片上分别沉积获得Fe-N薄膜样品. 利用X射线衍射(XRD)、 原子力显微镜(AFM)和超导量子干涉仪(SQUID)对样品的结构、 形貌和磁性能进行分析, 研究基片和基片温度等条件对薄膜的影响. 结果表明, 以NaCl单晶为基片获得单相γ′-Fe4N薄膜, 与玻璃基片相比可降低其生成的基片温度并可扩大形成温度的范围, 且比饱和磁化强度略有增大.   相似文献   

15.
Nanometer ferromagnetic metal-semiconductor matrix Fe−In2O3 granular films are fabricated by the radio frequency sputtering. Magnetic properties and the giant magnetoresistance (GMR) effect of Fex(In2O3)1−x granular film samples are studied. The result shows that the magnetoresistance (MR) ratio Δρ/ρ 0 value of the granular film samples with Fe volume fraction x=35% is 4.5% at room temperature. The temperature dependence (T=1.5–300 K) of the MR ratio Δρ/ρ 0 value of Fe0.35(In2O3)0.65 granular films shows that Δρ/ρ 0 value below 10 K increases rapidly with the decrease of the temperature, and when T=2 K, Δρ/ρ 0 value is 85%. Through the study of the dependence of low field susceptibility on temperature and the hysteresis loops at different temperatures, it has been found that, when the temperature decreases to a critical point T p=10 K, the change of the structure in Fe0.35)In2O3)0.65 granular films results in the transformation of state from ferromagnetic to spin-glass-like. The remarkable increase of the MR ratio Δρ/ρ 0 value of Fe0.35(In2O3)0.65 granular films below 10 K seems to arise from the peculiar conducting mechanism of the granular film samples in the spin-glass-like state.  相似文献   

16.
The major drawbacks of Nd-Fe-B magnets are relatively low Curie temperature and poor thermal stability. Ribbons with the near stoichiometric 2:14:1 composition of Nd10.8Dy0.75Tb0.75Fe79.7-xCoxZr0.8Nb0.8Cu0.4B6.0 (x=0, 3, 6, 9, 12, 15) were prepared by rapid quenching and subsequent heat treatment. The effect of Co element on the magnetic properties, thermal stability, and microstructure of the ribbons was systematically studied by vibrating sample magnetometer (VSM), thermal magnetic analysis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). It was found that Co substitution was significantly effective in improving the magnetic properties and the thermal stability of nanocrystalline ribbons. Although the intrinsic coercivity decreased from 1308.7 kA/m for x=0 to 817.4 kA/m for x=15, the remanence polarization and maximum energy product increased from 0.839 T and 116.5 kJ/m3 for the Co-free samples to 1.041 T and 155.1 kJ/m3 for the 12at% Co-substituted samples, respectively. About 10 K increase in Curie temperature was observed for the 2:14:1 phase with 1at% Co substitution. The absolute values of temperature coefficients of induction and coercivity were significantly decreased with Co substitution, which may be attractive for high operational temperature applications. The microstructure of nanocrystalline ribbons was slightly refined with Co substitution.  相似文献   

17.
Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.  相似文献   

18.
The giant magneto-optical Faraday effect of nanometer ferromagnetic metal-semiconductor matrix Fe-ln2O3 granular films prepared by the radio frequency sputtering are studied. The result shows that the Faraday rotation angle θF value of the granular film samples with Fe volume fraction x = 35% is of the order of 10^5(°)/cm at room temperature. Temperature dependence of the Faraday rotation angle θF of Fe0.35(In2O3)0.65 granular films shows that θF value below 10 K increases rapidly with the decrease of the temperature, and when T= 4.2 K, θF value is 106(°)/cm. Through the study of the dependence of low field susceptibility on temperature and the hysteresis loops at different temperatures, it has been found that when the temperature decreases to a critical point Tp = 10 K, the transformation of state from ferro-agnetic to spin-glass-like occurs in Fe0.35(In2O3)0.65 granular films. The remarkable increase of the Faraday rotation angle θF value of Fe0.35(In2O3)0.65 granular films below 10 K seems to arise from the sp-d exchange interaction of the granular film samples in the spin-glass-like state.  相似文献   

19.
The Fe3Si based coating was produced on the Fe-1 Si steel surface by a pulsed Nd:YAG (yttrium aluminum garnet) laser. Its phase constitution and microstructure were characterized by using X-ray diffraction (XRD), optical microscope (OM), and field emission scanning electron microscope (FESEM) with associated energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The hyperfine structure of the coating was studied by Mrssbauer spectra (MS) and the magnetic property was also measured at room temperature by a vibrating sample magnetometer (VSM). The obtained coating is pore and crack-free with dense microstructure and high Si content. The metallurgical bonding between the coating and the substrate was realized. The microstructure of the coating is typical fine dendrites. The major phase was confirmed by XRD and TEM to be the ordering D03 structured Fe3Si phase. In addition, there were smaller amounts of the Fe5Si3 phase and the γ-Fe phase in the coating. Compared with the substrate, the laser cladding coating has a lower saturation magnetization and a higher coercive force. The poor magnetic property might be because of rapid solidification microstructure and phase constitution in the coating.  相似文献   

20.
以AgNO_3溶液为介质,采用水热法在Mg-2.4Nd-0.5Sr-0.3Zr生物镁合金表面制备具有抗菌性能的耐蚀膜层,通过XRD、SEM、EDS等技术,对不同水热温度及时间条件下所制膜层的形貌及物相结构进行表征,结合电化学测试及抑菌试验,考察了水热条件对膜层耐蚀性和抗菌性能的影响。结果表明,Mg-2.4Nd-0.5Sr-0.3Zr合金表面膜层主要由层片状Mg(OH)_2和颗粒状Ag/Mg(OH)_2聚集混合组成,随着水热温度的升高及反应时间的延长,膜层厚度逐渐增加。电化学测试结果显示,膜层能有效改善合金的耐蚀性,且随着表面膜层厚度的增加,对应合金样品的耐蚀性增强。此外,经过水热处理制得的合金样品在金色葡萄球菌培养24h后,产生了明显的抑菌圈,表现出了良好的抗菌效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号