首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Mcl-1 is a potential therapeutic target in multiple types of cancer   总被引:1,自引:0,他引:1  
Resistance to apoptosis is a common challenge in human malignancies contributing to both progress of cancer and resistance to conventional therapeutics. Abnormalities in a variety of cell intrinsic and extrinsic molecular mechanisms cooperatively promote tumor formation. Therapeutic approaches that specifically target components of these molecular mechanisms are getting widespread attention. Mcl-1 is a highly expressed pro-survival protein in human malignancies and its cellular expression is tightly regulated via multiple mechanisms. Mcl-1 differs from other members of the Bcl-2 family in having a very short half-life. So inhibition of its expression and/or neutralization of its anti-apoptotic function will rapidly make Mcl-1-dependent cells more susceptible to apoptosis and provide an opportunity to combat several types of cancers. This review summarizes the current knowledge on the regulation of Mcl-1 expression and discusses the alternative approaches targeting Mcl-1 in human cancer cells whose survivals mainly depend on Mcl-1. Received 6 October 2008; received after revision 21 October 2008; accepted 10 November 2008  相似文献   

4.
MDA-MB-468 is a human mammary adenocarcinoma cell line that overexpresses the epidermal growth factor (EGF) receptor and undergoes programmed cell death (apoptosis) in response to EGF treatment. Programmed cell death was shown to be greatly enhanced when cells were growth-arrested prior to EGF treatment. Apoptosis was characterized by an initial rounding up and detachment of the cells from their substrate starting about 12 h after EGF treatment, followed by chromatin condensation, nuclear fragmentation and oligonucleosomal fragmentation of the DNA at about 24 to 48 h. Cell death was dependent on de novo protein synthesis. We found a rapid induction of c-fos, c-jun and junB at the mRNA level after about 30 min of EGF treatment and a more delayed upregulation of fosB and fra-1. The junD gene was expressed in the absence of EGF, and it was moderately induced within 30 min of growth factor addition. The increase of the different fos and jun mRNAs were paralleled by an increase of activator protein-1 (AP-1) DNA binding activity. A characterization of the AP-1 complex revealed similar levels of several Fos and Jun proteins. Based on the kinetics of AP-1 accumulation and cell death, it seems likely that AP-1 contributes to the apoptotic cell death of EGF receptor-overexpressing MDA-MB-468 cells. Received 21 July 1997; received after revision 6 November 1997; accepted 6 November 1997  相似文献   

5.
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway—nonsense-mediated RNA decay (NMD)—serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that “NMD therapy” may provide clinical benefit by downmodulating stress responses.  相似文献   

6.
Sphingosine 1-phosphate (SPP) is associated with the regulation of apoptosis, although its role in neutrophil apoptosis remains poorly investigated. Here, we show that exogenous SPP antagonizes spontaneous and anti-Fas-induced apoptosis in neutrophils. Pre-treatment with pertussis toxin clearly reduced the apoptosis-inhibiting capacity of SPP. Consequently, we investigated the involvement of potential modulators of apoptosis that are activated downstream of Gi/G0-coupled receptors. Neither Akt activity nor change in basal activity of c-Jun N-terminal kinases was detected during apoptosis or after adding SPP. In contrast, there was a transient decrease in phosphorylation of both extracellular-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) during both spontaneous and anti-Fas-induced apoptosis. Although exogenous SPP reversed these reductions in kinase activity, experiments with inhibitors of ERK (PD98059) and p38 MAPK (SB203580) revealed that only SB203580 counteracted the effect of SPP. Thus, SPP counteracts neutrophil apoptosis via a Gi/G0 protein survival-signalling pathway that includes modulation of p38 MAPK activity.  相似文献   

7.
8.
9.
10.
11.
12.
Rhomboid family members are widely conserved and found in all three kingdoms of life. They are serine proteases and serve important regulatory functions. In the present study, a novel gene highly expressed in the testis, RHBDD1, is shown to be a new member of the Rhomboid family, participating in the cleavage of BIK, a proapoptotic member of the Bcl-2 family. The RHBDD1-involved proteolytic modification is upstream of the BIK protein degradation pathway. Mutagenesis studies show that the amino acid residues glycine142 and serine144 of RHBDD1 are crucial for its activity in cleaving BIK at a site located in the transmembrane region. Overexpression or knock-down of RHBDD1 in HEK 293T cells can reduce or enhance BIK-mediated apoptosis, respectively. The present findings suggest that, by acting as a serine protease, RHBDD1 modulates BIK-mediated apoptotic activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 31 July 2008; received after revision 16 September 2008; accepted 19 September 2008  相似文献   

13.
Fas-associated factor 1 (Faf1) has been described as a Fas-binding pro-apoptotic protein and as a component of the death-inducing signaling complex (DISC) in Fas-mediated apoptosis. Faf1 is able to potentiate Fas-induced apoptosis in several cell lines, although its specific functions are still not clear. Here we show that Faf1 is highly expressed in several areas of the developing telencephalon. Its expression pattern appears to be dynamic at different embryonic stages and to be progressively confined within limited territories. To decipher the specific role of Faf1 in developing brain, we used cDNA over-expression and mRNA down-regulation experiments to modulate Faf1 expression in telencephalic neural precursor cells, and we showed that in neural cell death Faf1 acts as a Fas-independent apoptotic enhancer. Moreover, we found that Faf1 protein level is down-regulated during apoptosis in a caspase- and Apaf1-dependent manner.  相似文献   

14.
The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia. The mechanism of PCSK9 function and its involvement in neuronal apoptosis is poorly understood. We show here that RNAi-mediated knockdown of PCSK9 significantly reduced the death of potassium-deprived cerebellar granule neurons (CGN), as shown by reduced levels of nuclear phosphorylated c-Jun and activated caspase-3, as well as condensed apoptotic nuclei. ApoER2 protein levels were increased in PCSK9 RNAi cells. Knockdown of ApoER2 but not of VLDLR was sufficient to reverse the protection provided by PCSK9 RNAi, suggesting that proapoptotic signaling of PCSK9 is mediated by altered ApoER2 function. Pharmacological inhibition of signaling pathways associated with lipoprotein receptors suggested that PCSK9 regulates neuronal apoptosis independently of NMDA receptor function but in concert with ERK and JNK signaling pathways. PCSK9 RNAi also reduced staurosporine-induced CGN apoptosis and axonal degeneration in the nerve growth factor-deprived dorsal root ganglion neurons. We conclude that PCSK9 potentiates neuronal apoptosis via modulation of ApoER2 levels and related anti-apoptotic signaling pathways.  相似文献   

15.
Cyclin-dependent kinase 1 (CDK1) is a major component of the cell cycle progression engine. Recently, several investigations provided evidence demonstrating that unscheduled CDK1 activation may also be involved in apoptosis in cancerous cells. In this article, we demonstrate that X-ray irradiation induced G1 arrest in MOLT-4 lymphocytic leukemia cells, the arrest being accompanied by reduction in the activity of CDK2, but increased CDK1 activity and cell apoptosis in the G1 phase. Interestingly, this increase in CDK1 and apoptosis by ionizing radiation was prevented by pretreatment with the CDK1 inhibitor, roscovitine, suggesting that CDK1 kinase activity is required for radiation-induced apoptotic cell death in this model system. Furthermore, cyclin B1 and CDK1 were detected co-localizing and associating in G1 phase MOLT-4 cells, with the cellular lysates from these cells revealing a genotoxic stress-induced increase in CDK1 phosphorylation (Thr-161) and dephosphorylation (Tyr-15), as analyzed by postsorting immunoprecipitation and immunoblotting. Finally, X-irradiation was found to increase Bcl-2 phosphorylation in G1 phase cells. Taken together, these novel findings suggest that CDK1 is activated by unscheduled accumulation of cyclin B1 in G1 phase cells exposed to X-ray, and that CDK1 activation, at the wrong time and in the wrong phase, may directly or indirectly trigger a Bcl-2-dependent signaling pathway leading to apoptotic cell death in MOLT-4 cells. Received 30 March 2006; received after revision 23 June 2006; accepted 24 August 2006 J. Wu and Y. Feng contributed equally to this work.  相似文献   

16.
Activated protein C (APC) is a natural anticoagulant with strong anti-inflammatory, anti-apoptotic, and barrier stabilizing properties. These cytoprotective properties of APC are thought to be exerted through its pathway involving the binding of APC to endothelial protein C receptor and cleavage of protease-activated receptors. In this study, we found that APC enhanced endothelial barrier integrity via a novel pathway, by binding directly to and activating Tie2, a transmembrane endothelial tyrosine kinase receptor. Binding assays demonstrated that APC competed with the only known ligands of Tie2, the angiopoietins (Angs). APC bound directly to Tie2 (Kd ~3 nM), with markedly stronger binding affinity than Ang2. After binding, APC rapidly activated Tie2 to enhance endothelial barrier function as shown by Evan’s blue dye transfer across confluent cell monolayers and in vivo studies. Blocking Tie2 restricted endothelial barrier integrity. This study highlights a novel mechanism by which APC binds directly to Tie2 to enhance endothelial barrier integrity, which helps to explain APC’s protective effects in vascular leakage-related pathologies.  相似文献   

17.
Placentas associated with preeclampsia are characterized by extensive apoptosis in trophoblast lineages. Syncytin-1 (HERVWE1) mediates the fusion of cytotrophoblasts to form syncytiotrophoblasts, which assume the placental barrier, fetal–maternal exchange and endocrine functions. While decreased syncytin-1 expression has been observed in preeclamptic placentas, it is not clear if this alteration is involved in trophoblast apoptosis. In the current study, we found that siRNA-mediated knockdown of syncytin-1 led to apoptosis in choriocarcinoma BeWo, a cell line of trophoblastic origin. Characterization of the apoptotic pathways indicated that this effect does not rely on the activation of caspases. Rather, decreased syncytin-1 levels activated the apoptosis inducing factor (AIF) apoptotic pathway by inducing the expression, cleavage, and nuclear translocation of AIF. Moreover, calpain1, the cysteine protease capable of cleaving AIF, was upregulated by syncytin-1 knockdown. Furthermore, treatment with calpain1 inhibitor MDL28170 effectively reversed AIF cleavage, AIF nuclear translocation, and cell apoptosis triggered by syncytin-1 downregulation, verifying the specific action of calpain1–AIF pathway in trophoblast apoptosis. We confirmed that preeclamptic placentas express lower levels of syncytin-1 than normal placentas, and observed an inverse correlation between syncytin-1 and AIF/calpain1 mRNA levels, a result consistent with the in vitro findings. Immunohistochemistry analyses indicated decreased syncytin-1 and increased AIF and calpain1 protein levels in apoptotic cells of preeclamptic placentas. These findings have for the first time revealed that decreased levels of syncytin-1 can trigger the AIF-mediated apoptosis pathway in BeWo cells. This novel mechanism may contribute to the structural and functional deficiencies of syncytium frequently observed in preeclamptic placentas.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号