首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针对CQ油田弱凝胶体系开展了弱凝胶封堵低渗透裂缝性油藏试验,研究了弱凝胶体系对不同裂缝宽度的封堵效果及对应岩心注采特征,并根据试验结果改进弱凝胶体系配方,达到了较理想的改善效果。弱凝胶封堵0.20 mm裂缝宽度试验结果表明,裂缝与基质分液量比由1:0改善至0.04:0.96;水驱结束时,平衡压力0.60 MPa,基质采收率40.91%,裂缝采收率3.00%,综合采收率43.91%。弱凝胶封堵0.43 mm裂缝宽度试验结果表明,裂缝与基质分液量比由1∶0改善至0.10∶0.90;水驱结束时,平衡压力0.55 MPa,基质采收率38.25%,裂缝采收率4.15%,综合采收率42.40%。弱凝胶封堵0.98 mm裂缝宽度试验结果表明,裂缝与基质分液量比由1∶0改善至0.85∶0.15;水驱结束时,平衡压力0.17 MPa,基质采收率21.38%,裂缝采收率7.90%,综合采收率29.28%。改进CQ油田弱凝胶体系,使得改进的复合体系封堵0.98 mm裂缝宽度后,基质采收率由改进弱凝胶体系前的29.28%上升至42.35%,相对增幅44.64%。通过现场的施工应用,复合弱凝胶体系调驱堵水后的对应采油井组采油量增加,含水率降低,措施效果明显。  相似文献   

2.
油田在长期的注水开发过程中,储层由于具有可溶性,或胶结性差的原因,会形成裂缝性储层,而裂缝性储层在调整吸水剖面时,凝胶类的调剖剂在矿场应用出现了调剖效果差,有效期短的问题,因此,油田现场急需研究一种堵塞强度高,封堵效率高的裂缝封堵剂。在室内我们研究了一种以水泥为主要材料的裂缝性化学堵水技术,该技术可以有效的封堵裂缝性储层,同时具有成本低、封堵效率高、封堵强度高的特点,具有很高的矿场应用价值。  相似文献   

3.
为提高注水效果和采收率,常使用化学堵水法来达到调剖堵水的目的。研究以三氯化钛和硫化钠溶液为主反应生成的钛酸盐调堵体系,研究并评价了其独特的结构和在岩石孔隙中的调剖堵水效果。可知,钛酸盐晶体以孔隙吼道为模型在其中逐渐生成,且钛酸盐晶体虽然在岩石喉道中形成了封堵强度较大的晶体网状结构,但其内部仍然具有比喉道更小的孔隙具有一定的渗透性。岩心驱替实验结果表明钛酸盐调堵体系在不同渗透率岩心中均可成功生成钛酸盐晶体且封堵效果好;并且其对高渗透率岩心的封堵能力强于低渗透率岩心。同时钛酸盐体系与聚合物弱凝胶体系的对比评价可知,钛酸盐晶体的调剖效果远优于注入聚合物凝胶体系的调堵效果,高温条件下钛酸盐调堵体系的稳定性也远高于聚合物凝胶的稳定性。  相似文献   

4.
针对西北油田的毫米级裂缝油藏,研制出了一种适用于130℃、矿化度22×10~4mg/L的交联聚合物颗粒,并且经过工业化破碎方式实现颗粒粒径在1~10 mm之间粒径可调。通过定制的透明变缝宽裂缝模型,研究该毫米级颗粒对裂缝的封堵和运移规律。经过实验发现,颗粒粒径接近裂缝宽度时,颗粒的深部运移能力较强,但形成的封堵段塞强度较弱;当颗粒粒径为裂缝宽度的4~6倍,颗粒的深部运移能力和段塞的封堵强度都很强;当颗粒粒径大于裂缝宽度8倍时,颗粒很难进入裂缝。同时,将裂缝宽度2~8倍左右的颗粒进行复配使用,其深部运移能力和对裂缝产生的封堵效果都优于单一粒径颗粒单独使用。  相似文献   

5.
姬塬油田侏罗系油藏早期见水堵水调剖技术研究   总被引:1,自引:0,他引:1  
针对姬塬油田侏罗系油藏开发过程中孔隙性见水的特点,对不同调剖剂进行了室内适应性及现场实验评价,设计优选了预交联颗粒加缔合聚合物弱凝胶为主的复合深部调剖体系.预交联颗粒发挥深部调剖作用,有效封堵大的孔喉通道;缔合聚合物弱凝胶为辅,使其发挥封堵和驱油作用.现场应用表明该体系具有很好的堵水调剖效果,能满足姬塬油田侏罗系油藏堵水调剖的需要.  相似文献   

6.
 针对碳酸盐岩缝洞型油藏的井间连通模式,依据储集性宏观上相似、连通关系具有可借鉴性的原则,设计制备裂缝网络和裂缝-溶洞两种简化的缝洞岩心物理模型,通过凝胶调剖实验,研究了不同井间连通模式对调剖的影响。结果表明:两种简化物理模型的含水率变化均表现为经过一段无水采油期后暴性水淹,注凝胶调剖后含水率明显下降,与裂缝-溶洞模型相比,裂缝网络模型含水率下降幅度较大,且后续水驱过程中含水率上升较慢;裂缝网络模型的水驱采收率、最终采收率和采收率提高程度均高于裂缝-溶洞模型;裂缝网络模型注凝胶调整吸水剖面、扩大注入水波及体积的作用更明显,调剖效果更好。  相似文献   

7.
采用单岩芯流动试验考察了IPN、606、612三种预交联凝胶颗粒在裂缝性岩芯中的封堵系数分布情况,同时研究了三种凝胶颗粒在裂缝岩芯中4、10、30、180d后的封堵率、封堵保留率、颗粒突破压力梯度。试验结果表明:凝胶颗粒在裂缝岩芯中的封堵系数分布及其动态规律能很好的用来评价颗粒在裂缝岩芯中的运移规律与调剖特性。发现IPN凝胶颗粒表现了良好的封堵效果,当注入1PV水时,裂缝长岩芯段封堵系数很稳定,明显高于606和612两种凝胶颗粒。180d后在裂缝岩芯中的封堵效率能达到90.3%,堵水率保留率达到99%,适合作为“窜流型油藏”的深部调剖剂。  相似文献   

8.
针对油水层复杂、渗透率高、含水上升快的陆9K1h油藏,在室内通过筛选增粘能力和抗剪切能力较强的疏水缔合聚合物作为调剖用凝胶主剂,采用酚醛类作为交联剂,研制的凝胶体系(AP-BC)表观黏度可达11×104mPa·s,并具有较好的稳定性;经多孔介质剪切后凝胶成胶时间延长50%,胶体强度降低小于10%,稳定性更好,老化5个月未见脱水现象;在相同渗透性的油、水饱和的填砂管实验中,AP-BC凝胶更易封堵水层。由于陆9K1h油藏具有底水、薄层的特点,因此采用了“垫+调+堵”多段塞深部封堵的工艺,通过逐渐提高弱凝胶的强度,促使高强度堵剂得到合理的放置,实现对高渗透大孔道的封堵作用,提高注水开发的波及效果。现场试验表明,7个井组中,对应油井在调剖后第2个月到第6个月期间见到了明显增油效果。  相似文献   

9.
针对油井综合含水率高的特点,选取弱凝胶体系作为深部调驱堵水剂。实验测试不同聚丙烯酰胺(HPAM)浓度和不同交联剂浓度下的弱凝胶成胶强度,优选出HAPM的浓度为2000 mg/L,交联剂的浓度为800 mg/L。为了降低成本提高调驱堵水效果,在弱凝胶体系的基础上,优选黏土、悬浮剂和固化剂的浓度,配制黏土凝胶。开展了填砂管试验和人工裂缝模拟实验,完成了弱凝胶体系的段塞优化设计。研究结果表明,对于大孔道型储层最优的段塞组合为聚合物+弱凝胶+黏土凝胶+弱凝胶;对于裂缝性储层,还需要在段塞组合中加入无机堵剂。通过现场的施工应用,调驱堵水后的对应采油井组采油量增加,含水率下降,措施效果明显。  相似文献   

10.
双河油田在注水中存在油田水淹严重、注水波及不均匀等问题,常规调剖工艺无法从根本上解决上述问题。通过室内实验优化筛选、评价,研制了由聚合物和交联剂组成的弱凝胶调驱体系及基本配方,其中交联剂具有较高的膨胀率,发挥了深部调剖的作用,能有效封堵大裂缝出水通道,聚合物主要发挥驱油作用,能有效启动小裂缝中的剩余油。利用该体系在双河油田的5口井进行了矿场应用,取得了降水增油的效果。  相似文献   

11.
伊拉克S油田主力开发层系为中高孔、中低渗的孔隙-裂缝型碳酸盐岩油藏,酸化压裂是该碳酸盐岩储层改造的主要技术手段之一。由于储层裂缝溶洞发育,非均质强,酸液滤失量大,作用距离有限,需要结合裂缝暂堵技术,实现对非均质储层的均匀改造。根据该油田储层地质油藏资料,对裂缝尺寸进行分析,并将储层裂缝划分为微缝和常规缝。实验通过巴西劈裂,对储层标准岩心进行劈裂造缝,模拟了真实粗糙微缝(0.03 mm、0.05 mm、0.08 mm),然后采用3D打印岩板模拟了常规粗糙裂缝(1 mm、2 mm、3 mm),最后将粉末、纤维、颗粒合理配比作为暂堵剂对裂缝进行封堵,优选了裂缝封堵配方。实验结果表明:针对微缝,纤维和粉末均能有效封堵裂缝,纤维相比粉末更易封堵微缝,封堵后承压均超过30 MPa;针对常规缝,采用纤维或纤维与颗粒组合可有效堵裂缝,封堵后承压均超过30 MPa。通过裂缝封堵实验,探索了碳酸盐岩缝内封堵规律,优选了暂堵剂配方,可为现场裂缝封堵施工提供理论依据。  相似文献   

12.
常规固结堵漏浆体驻留性差、井筒留塞难。现场采用两级固结堵漏工艺,在固结堵漏浆体前向漏失层注入高黏稠浆体,以提高浆体驻留性。但对堵漏作业过程中井筒压力变化规律认识不清,井筒压力精细控制不足,工艺参数如排量、浆体体积等的确定缺乏理论指导,这些仍然是固结堵漏工艺优化面临的关键问题之一。基于浆体在裂缝中一维径向流动模型,建立了多级固结堵漏动力学模型,提出临界压差和压差比两个参数表征浆体的驻留性。以高黏稠凝胶浆+水泥浆两级固结堵漏工艺为例,分析裂缝宽度、排量、浆体体积及比例对井筒压力的影响,厘清堵漏过程中与环空液面高度变化与井筒压力的关系。研究表明:裂缝宽度越小,堵漏过程中井筒与地层压差、临界压差越大,浆体更容易驻留。增加浆体体积和高黏稠浆体比例,有助于浆体驻留,但实际堵漏应综合考虑浆体驻留、漏层裂缝封固以及成本等多因素。浆体排量越大,压差比越大,不利于浆体驻留。环空液面高度变化可以判断漏失地层井筒压力变化,现场应加强环空液面高度的监测。  相似文献   

13.
塔里木盆地塔中北坡奥陶系地层是典型的高温高压气层,气藏钻井工程中常诱发气侵溢流等复杂危害,严重影响了钻井的进度和安全。当前采取的封缝堵气措施面临着超高温高温高压及地层非均质性带来的压力窗口窄、钻井液性能不稳定、封堵材料效果不显著等诸多问题,很难快速高效的一次性形成稳固封堵区。文章以顺南区块为例,分析地质特征及带来的封缝堵气技术难点,考虑高温高压特征对现场井浆的影响,利用人工造缝岩心及封缝堵气实验装置开展评价实验。室内形成高强度复合架桥材料及广谱粒径纤维材料,优选纳米材料,并结合现场井浆对封缝堵气材料体系开展性能评价,体系与钻井液配伍性良好,能够有效封堵气层,储层伤害恢复程度大于90%  相似文献   

14.
肇州油田具有储层渗透率(特)低、非均质性强、油层薄等特点,由此导致水平井区油井含水上升快、产量低。针对该油田的油藏特点,选用地下聚合交联的凝胶SC-2作为调剖剂;从注入性、封堵能力、封堵选择性等方面对SC-2凝胶在目标区块中的适应性进行评价;并设计了目标区块水平井区深部调剖矿场试验方案。室内实验结果表明,在目标油藏条件下未成胶SC-2溶液的黏度与水相近,具有良好的注入性;在储层模型中聚合交联后的凝胶对水窜通道封堵率达到99%以上,且对水流通道具有良好的封堵选择性。矿场试验结果表明,目标区块实施深调后,注水井吸水剖面得到改善,油藏中液流方向得到调整,油井含水率明显下降,其中肇57-平35井的含水率由85.0%下降到78.2%,日产油由1.1 t上升至1.3 t。  相似文献   

15.
致密储层在体积压裂过程中由裂缝导致的漏失对压裂液能效利用和套管变形均有影响,不同类型裂缝的漏失所具有的特点差异显著,目前仍没有针对性的控制措施。本文首先明确了体积压裂裂缝(简称体积裂缝)的分类及性质,在总结体积裂缝漏失类型及特点的基础上,调研了各类漏失的应对方法及优缺点,分析了解决上述漏失问题的控制技术和封堵材料,并指出了体积裂缝漏失的发展方向。结果表明:体积裂缝漏失可分为水-岩相互作用导致的拉伸裂缝漏失、小井距体积压裂造成的裂缝串通漏失、天然裂缝/断层沟通导致的漏失三类;压裂中添加粉砂和压裂液体系离子调节能缓解拉伸裂缝导致的漏失,压裂参数优化与暂堵结合能使得裂缝转向,降低小井距裂缝串通漏失的频率,优化压裂选段或提前封堵天然裂缝/断层能降低压裂液在天然裂缝/断层中的漏失;压裂参数精细化、发展裂缝转向或能够形成自适应封堵的新型材料是未来发展的趋势。结论认为:在地质工程一体化框架下,针对体积裂缝的漏失类型采取对应的控制措施,以压裂参数优选协同自适应封堵材料的思路控制体积压裂裂缝漏失,为提高压裂液能效和预防套管变形提供技术支持。  相似文献   

16.
利用不同粒径的石英砂和砾岩制作填砂模型,并计算每个模型对应的孔喉半径,研究了孔喉半径对弱凝胶体系封堵性能的影响。驱替试验结果表明,随填充颗粒半径的减小,孔喉半径也减小,而后续水驱最高封堵压力增大。当孔喉半径小于0.376 mm时,弱凝胶体系封堵效果良好,最高封堵压力高于2.5 MPa;而当孔喉半径大于0.376 mm时,弱凝胶体系的封堵效果不理想,最高封堵压力低于0.35 MPa。测定产出胶体视黏度结果表明,孔喉半径对产出胶体视黏度也存在类似规律,以孔喉半径0.376 mm为界限,当小于该值时,胶体的视黏度较未通过填砂模型的胶体的视黏度大幅降低为3 352 m Pa·s;而大于该值时,胶体的视黏度则大于14 894 m Pa·s。  相似文献   

17.
外围油田覆膜砂控水压裂技术适应性探讨   总被引:1,自引:0,他引:1  
针对葡萄花储层开发中后期中高含水井,常规措施压裂后经常出现大幅度增液,而增油幅度较小甚至不增油,即便压裂后达到了预期增油效果,其含水上升速度也较快,有效期难于控制。结合大庆油田外围地层裂缝走向、渗透率、油层发育等情况以及井层压前产液、含水等状况,开展了现场试验,通过压裂工艺将覆膜砂携至裂缝中,生产时形成一条高含油饱和带,实现覆膜砂对油水流动能力的选择,达到具有堵水不堵油特性。通过近几年效果跟踪统计,分析其增油降水的效果及适应性,该技术可有效提高油井压裂后油层动用程度,降低油井采出液的含水率,拓宽压裂选井选层范围。  相似文献   

18.
 针对黑油模型等效处理裂缝方法不能很好体现裂缝在油藏中的特性,利用裂缝-基质耦合渗流理论方法,建立油水两相三维裂缝性油藏数值模型。基于该数值模型研究油藏地质和开发条件对弱凝胶调驱效果的影响,对影响因素进行了显著性评价,通过对调驱影响显著的因素进行定量研究,提出了裂缝性油藏适宜调驱的油藏条件。利用正交分析方法,对实际油藏进行调驱参数优化设计。  相似文献   

19.
在深井钻完井过程中,钻井完井液损害造成渗流能力降低是储层最重要的损害机理。选用深井钻井现用钻井液、优化钻井液对储层天然岩样、人造裂缝岩样的损害实验,以及钻井完井液侵入评价实验共同揭示研究区块储层损害特征。分析两类固相堵塞,固-液、液-液配伍性,毛管现象及工程因素对于储层渗流能力的影响;并提出多级架桥暂堵技术、调整钻井液配伍性能等对策提高地层渗流能力,为钻井完井决策提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号