首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
锂离子电池能量密度的提高与其正极材料密切相关,富锂层状氧化物及新型聚阴离子化合物作为下一代高能锂离子电池的正极材料已引起研究工作者的广泛关注.结合本课题组的研究工作,综述了这一领域的最新研究工作进展.重点针对材料结构、物理化学(尤其是电化学)特性、电化学反应机理的原位谱学研究以及材料组成-结构-性能之间的相互关系进行了总结、分析及评述.  相似文献   

2.
杜柯  胡国荣 《科学通报》2012,(10):794-804
富锂锰基固溶体xLi[Li1/3Mn2/3]O2.(1–x)LiMO2具有超过目前所用正极材料1倍的高比容量,是很有潜力的下一代锂离子电池用正极材料,但是其他电化学性能,特别是功率特性尚不能满足应用要求.从机理研究、合成工艺和性能改进3方面综述了富锂锰基固溶体型锂离子电池正极材料xLi[Li1/3Mn2/3]O2.(1–x)LiMO2的研究现状,提出了下一步的研究思路和方向.  相似文献   

3.
金属-有机框架(MOFs)材料具有容易制备、高孔隙率、容量大、种类丰富等优点,在能源储存和转化领域受到广泛关注,是合成高性能电极材料的潜在模板.本文介绍MOFs直接应用于锂离子电池正极材料的研究进展,重点综述了MOFs衍生材料(硫化物、氟化物、聚阴离子型化合物或锂的过渡金属酸盐)的制备方法,及其在锂离子电池正极中的应用.最后总结MOFs及其衍生材料在锂离子电池正极材料的应用方向及发展前景,为新型电极材料的开发提供参考经验.  相似文献   

4.
锂离子电池的发展现状及展望   总被引:1,自引:0,他引:1       下载免费PDF全文
王鹏博  郑俊超 《自然杂志》2017,39(4):283-289
锂离子电池具有比能量高、无记忆效应、工作电压高以及安全、长寿命的特点。本文回顾了锂离子电池的发展历史,分析了锂离子电池的工作原理,总结了锂离子电池的特点,综述了目前锂离子电池常用的正、负极电极材料和电解质,最后分析了锂离子电池目前存在的问题并对其未来的发展进行了展望。  相似文献   

5.
全固态锂离子电池是以固态电解质取代液体电解质的锂离子电池、它有望从根本上解决电池的安全性问题,如能实现其大容量化和长寿命,将在电动汽车和规模化储能领域具有非常广阔的应用前景.由于固态电解质比液态电解质有更宽的工作电位窗口,因此可以在全固态电池中使用具有较高电压平台的正极材料,通过提升电池的工作电压以获得高能量密度,从而实现大容量化.锂离子电池正极材料尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料都具有较高的电压平台,是全固态锂离子电池可选用的理想正极材料.本文介绍了尖晶石LiNi0.5Mn1.5O4,三元层状材料和富锂锰基正极材料的结构和性能特点,重点阐述了与改善材料的电导率和界面性质相关的的研究,改善其作为全固态锂离子电池正极材料与固态电解质的匹配性能,从而全面提升全固态电池的性能.总结了3种材料在全固态锂离子电池中应用存在的问题,提出未来的技术攻关方向,并对其在全固态电池中的应用前景进行了展望.  相似文献   

6.
薄膜锂离子电池作为各种微电子系统的首选电源被广泛研究.本文系统综述了近年来锂离子电池Sn基薄膜负极材料的研究进展,着重介绍纯Sn薄膜、Sn基合金和Sn基氧化物薄膜的制备与性能.纯Sn薄膜具有高的可逆容量,但其嵌锂/脱锂过程的巨大体积变化导致循环性能很差,而且纯Sn薄膜的制备方法及其与电解液的界面特性对电极容量衰减有很大的影响.将Sn与非活性过渡金属复合,虽可有效提高电极循环性能,但同时带来容量的损失;Sn与活性成分形成的纳米晶多相复合薄膜负极可在保持高容量的同时,获得良好的循环性能.与纯Sn薄膜负极相比,Sn基氧化物薄膜存在纳米Sn相原位生成的过程,因此具有较好的循环稳定性,但其首次不可逆容量大.已有的研究进展充分说明,微纳组织调控能够显著改善上述薄膜电极的性能.分析和总结现有Sn基薄膜负极材料的微观结构和性能之间关系的研究进展,多相多尺度结构调控应是进一步提高Sn基合金薄膜负极的容量和循环稳定性的重要途径.  相似文献   

7.
朱晓辉  陈宁  连芳  宋亚平  李阳 《科学通报》2011,56(25):2146-2149
基于密度泛函理论的第一原理方法, 计算了7 大类、18 种锂离子电池活性材料(LiMO2, LiMn2O4, LiMPO4, Li2MSiO4, 石墨C 等系列)的脱嵌锂电压. 计算结果表明, 通过脱嵌锂前后的总能量变化可以计算出相关体系的脱嵌锂电压, 这些理论计算值与实验值存在非常好的线性关系, 但同时显示它们之间存在一个系统偏差, 该值可以通过金属锂的表面束缚能加以解释. 因此, 这种理论计算方法是一种预测其他未知体系的脱嵌锂电压的简单有效方法.  相似文献   

8.
锂离子电池在能量密度和工作电压等关键工作性能方面具有很大的优势,广泛应用于电化学储能系统中.锂离子电池由于具有能量密度高、电解质易燃、隔膜稳定性低等特性,不可避免地出现热失控等安全问题.若局部区域电池的热失控事件不能有效控制,将导致热失控事件扩展至系统层面,造成严重安全问题.因此,在电池体系未能取得重点突破,本征安全问...  相似文献   

9.
杨立  王保峰  邱亚丽 《科学通报》2005,50(17):1829-1833
安全性是阻碍大容量锂离子电池实用化的主要障碍之一, 而通过原位的方法测定影响电池安全性的一些因素对锂离子电池的安全性设计具有重要意义. 本文通过设计适当的试验装置, 选用目前所用的典型材料, 模拟实际情况, 装配了试验电池并在线测量了其体积和压力变化以及电解液的蒸汽压和隔膜阻抗与温度的关系. 结果表明: 在100℃时, 电解液蒸汽压达到26 kPa, 约30℃时的25倍; 隔膜在135℃左右会发生热闭合, 阻抗增加2个数量级; 电池的体积变化主要受碳负极的影响, 并且石墨电极比无定形碳负极的体积变化更为显著.  相似文献   

10.
张彬彬  李雨竹  杨成  邓昭 《科学通报》2019,64(32):前插11,3371-3377
基于锂离子电池在循环过程中产生的体积效应严重影响整个电池的循环稳定性的问题,本研究设计了一种利用聚吡咯包覆金属有机框架的简单方法,来合成蛋黄壳结构的碳包覆氧化锰材料,并用于锂离子电池的负极材料.所制备的碳包覆氧化锰纳米颗粒在锂离子电池充放电过程中表现出良好的比容量,在0.1, 0.5和2 A g~(–1)的电流密度下分别表现出723, 651, 374 m Ah g~(–1)的比容量.在具有优异的倍率性能的同时,该材料还具有优异的稳定性.在上述3个电流密度下,该材料循环200圈后容量没有明显的衰减.该纳米结构MnO_x的制备方法和电化学理解也可以推广到其他过渡金属氧化物,最终实现高性能的锂离子电池.  相似文献   

11.
随着科技发展,锂离子电池技术广泛发展。文章介绍了在飞机上使用的锂离子电池的发展简述及其优异的性能,最后对锂离子电池的前景进行了展望。  相似文献   

12.
闻雷  陈静  罗洪泽  李峰 《科学通报》2015,(7):630-644
随着具有变形功能的移动电子设备的出现和发展,为其供电的可变形、柔性锂离子电池近年来受到广泛关注.柔性锂离子电池一般指具有可逆弹性变形能力,同时可正常工作的锂离子电池.按照变形难易程度,大部分研究中的柔性锂离子电池,均指可弯折柔性锂离子电池.本文总结了石墨烯在可弯折柔性锂离子电池领域的进展情况.石墨烯具有很高的电子电导率,可将石墨烯附着于高分子、纸、纺织布等柔性基底上,利用基底提供柔性支撑、力学性能,石墨烯提供导电网络,形成石墨烯/柔性基体复合结构.利用石墨烯的二维柔性结构及表面官能团,与其他材料复合,能够制备出一体化石墨烯复合柔性电池电极.石墨烯柔性复合材料作为电极时,能够提高电池的整体能量密度,因此具有更广阔的发展前景.本文同时介绍了柔性锂离子电池的力学特性和电化学性能表征方法,并对柔性锂离子电池的未来发展方向进行了预测.柔性锂离子电池发展趋势是提高其变形能力,并赋予柔性锂离子电池一定的可拉伸性能,以使其适应各种复杂应用;新型柔性锂离子电池也将具有自修复和快速充电能力;未来同时将研究喷涂或打印等新型柔性电极的制备和器件优化设计.虽然仍然存在尚待解决的问题,石墨烯柔性锂离子电池经过适当的电化学性能和力学性能改进,将在移动电子领域得到广泛应用.  相似文献   

13.
采用共沉淀法和固相烧结法相结合合成LiNi1/3Co1/3Mn1/3O2和Ce掺杂LiNi1/3Co1/3-Mn1/3O2锂离子电池正极材料.采用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和形貌进行了表征.结果表明,不同Ce含量的正极材料均具有良好的层状结构、结晶度高.采用电化学性能测试的结果表明,放电容量随着Ce含量的增加而有所增加,首次可逆容量的衰减也随着掺杂Ce而有所降低,当Ce含量为x=0.2,0.2C恒电流充放电时,循环50次后的容量保持为91%.  相似文献   

14.
高健  何冰  施思齐 《自然杂志》2016,38(5):334-341
利用高通量计算来挖掘材料基因是加速材料研发的有效手段。利用第一性原理对目标材料进行精确计算,可以得到晶体结构、电子结构、缺陷、相图与相变、离子/电子输运机制等信息。通过综述锂离子电池无机固体电解质材料的计算研究进展,展望了计算在高电导率、宽电化学窗口且与正负极匹配的固体电解质材料的高效优化、选取和设计方面的应用前景。  相似文献   

15.
李永  宋健  杨捷 《科学通报》2012,(27):2599-2606
新能源汽车电池膜材料目前广泛应用于混合动力汽车、燃料电池汽车和纯电动汽车等新能源汽车,电池膜主要分燃料电池膜(发电装置)和动力蓄电池膜(充放电装置)两类.随着电池膜材料工艺和技术的迅猛发展,迫切需要研究膜材料的服役性能和使用寿命.本文介绍了近年来质子交换膜材料、锂电池隔膜材料和镍氢电池隔膜材料的研究进展,结合本实验室的研究工作,着重介绍了汽车电池膜材料的服役性能和使用寿命的影响因素及控制策略,讨论了新能源汽车电池膜材料的未来发展方向.  相似文献   

16.
相较于传统储能器件,锂离子电池具备高能量密度、长循环寿命、无记忆效应等优点,已被广泛应用于便携电子设备、电动汽车以及大规模储能等领域中.然而,随着锂离子电池能量密度的不断提升,其安全性受到极大挑战,电池安全事故频发.热失控是导致电池安全性不佳的主要诱因,其受到滥用情况、电池初始状态、工作条件以及电池结构设计的影响,无法完全避免.了解锂离子电池热失控的内在机制和外部特征,对电池热失控进行检测和早期预警,避免热失控引发的灾难性安全事故发生,可显著提升电池安全性.本文系统介绍了锂离子电池热失控的主要诱因(包括电滥用、热滥用、机械滥用等)、热失控发生的过程及早期预警信号和方法(包括电池电压/电阻、温度、压力、气体、声音、烟雾、火焰等).最后,对未来锂离子电池热失控预警的高精度、宽应用范围的发展趋势进行分析和展望.  相似文献   

17.
无纺布支撑聚合物凝胶电解质锂离子电池   总被引:4,自引:0,他引:4  
唐定国  刘建红  其鲁  晨晖  慈云祥 《科学通报》2004,49(22):2290-2293
PVDF-HFP是制备聚合物电解质膜最常用的聚合物之一, 它具有成膜性好, 电化学性能优良等特点. 纳米SiO2粒子均匀地分散在聚合物电解质膜中可以提高膜的孔隙率, 有利于提高聚合物电解质膜的离子电导率和电化学性能. 本文将无纺布在PVDF-HFP/SiO2/丁酮/丁醇/增塑剂混合液中浸渍后, 真空干燥除去增塑剂制得多孔的无纺布支撑聚合物电解质复合膜, 并以其为隔膜组装聚合物锂离子电池(LiCoO2/无纺布聚合物复合膜/MCMB), 对其电化学性能进行了表征. 研究结果表明, 无纺布聚合物复合膜具有一定的机械强度和良好的电化学性能. 室温下无纺布聚合物复合膜的离子电导率为3.35×10-4 S/cm, 约相当于同样条件下普通隔膜的60%; 其电化学稳定窗口为4.8 V vs. Li+/Li. 使用无纺布聚合物复合膜组装的聚合物锂离子电池具有良好的倍率放电特性及充放电循环性能.  相似文献   

18.
废旧锂离子电池中钴的生物淋滤机制   总被引:1,自引:0,他引:1  
辛宝平  李是珅  赵小鹭  郭晓洁  张迪  吴锋  李丽 《科学通报》2008,53(23):2881-2887
研究了废旧锂离子电池中钴的生物淋滤行为及机制, 氧化亚铁硫杆菌和氧化硫硫杆菌组成的混合菌株用于电池的生物淋滤. 电极材料的包裹与否对其淋滤行为没有影响. 在pH值最低的硫磺淋滤体系中, 钴离子的溶出浓度最低; 在pH值较低、ORP(氧化还原电位)值强烈变化的硫磺+黄铁矿组合淋滤体系中, 钴离子的溶出浓度最高. 研究表明, 废旧锂离子电池中钴的溶出只涉及间接机制. 在硫磺淋滤体系中其溶出机制在于生物产酸的酸溶作用; 在硫磺+黄铁矿组合体系中其溶出机制在于生物产酸的酸溶释放和生物氧化产物Fe3+引发的Fe2+之还原释放, 生物酸溶和Fe2+还原溶出的化学模拟进一步证实了两机制在钴离子溶出中的作用. 用XPS (X 射线光电子谱)和EDS(能量色散光谱)分析了生物淋滤电极材料的微观过程和微观特性.  相似文献   

19.
曹学成  杨瑞枝 《科学通报》2019,64(32):前插8,3340-3349
锂-空气电池是一种具有高能量密度、环境友好等优点的最具潜力的下一代储能电池体系.然而,其正极电化学反应缓慢的动力学过程导致了锂-空气电池充/放电过电位高、能量效率低、倍率性能差,而且催化剂的不稳定性也导致电池循环寿命短.开发高效且稳定的正极催化剂材料是解决上述问题的主要途径,也是锂-空气电池未来研究的重点.本文总结近几年来锂-空气电池正极催化剂的研究进展,并结合本课题组研究工作,以催化剂种类为切入点,深入综述及讨论了锂-空气电池催化剂的发展和存在的问题,并且展望了未来锂-空气电池正极催化剂的设计思路及对催化剂表界面反应机理的研究,对未来开发出高效、实用化的锂-空气电池具有重要的意义.  相似文献   

20.
锂离子电池是能源领域的革命性创新,具有能量密度高、循环寿命长等优点,推动了新能源、新能源汽车等新兴产业的跨越式发展,并应用于卫星、无人机等国家战略领域,成为世界各国竞争的战略高地.锂离子电池的广泛应用不仅源于新兴能源材料的创新,还与制造工艺及装备技术的进步密不可分.极片制造作为生产锂离子电池最核心的过程,包括制浆、涂布、辊压三大关键工序,制造的正负电极构成了电化学反应载体和整个电池的核心.在电极制造中,多孔多组分电极微结构发生复杂的演化与定构过程,很大程度上决定了单体电池的能量密度、倍率特性等性能.本文分析极片制造中制浆、涂布和辊压技术进展与应用情况,重点讨论电极微结构在制造过程中的演化以及其对电池电化学性能的影响,旨在从“制造工艺-微结构-性能”之间的关系视角形成对电极微结构设计、材料制备、制造工艺的进一步认识,为研发高性能锂离子电池提供指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号