首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设ρ(x,α)是R~n上具C~∞系数的线性偏微分算子。关于伸缩群{δ_τ}_(τ>0)是m次拟齐性的。其中δ_τ:R~n→R~n,δ_τ(x_1,…,x_n)=(τ~(a_1)(x_1),…τ~(a_n)(x_n),x=(x_1,…x_n)∈R~n,τ>0,a_1,…a_n为给定正数。设S为R″上的Schwartz空间,给定f∈S,考虑方程 pu=f,u∈S (1) 定理1 S中存在一个属于第二纲集的子集F,对于每个/∈F,方程(1)无解。定理2 (1)若m>0,则方程(1)有解的必要条件为:对于每个满足sum from j=1 to n(α_jα_j相似文献   

2.
§1.引言设?_n是n个文字的n!阶对称群,x_ρ~(λ)表示划分(λ)=(λ_1,λ_2…,λ_s)对应于?_n的类ρ=(1~(α_1)2~(α_2)…n~(α_n))的特征,这里?我们知道,求x_ρ~((λ))与用α_1,α_2,…,α_l的多项式表示x_ρ~((nl,(μ)))的问题是密切相关的,且后者的应用此前者更为广泛,这里1≤l相似文献   

3.
设G是群,φ:G→G为自同构.若对任意的x∈G,有φ(x)x=xφ(x),则称φ为G上的交换自同构.设Tn是域F上所有n×n阶可逆上三角矩阵全体按矩阵乘法构成的群,n≥3,F*为F中非零元全体组成的乘法群.证明了映射φ:Tn→Tn为Tn的交换自同构当且仅当存在群同态σi:F*→F*,1≤i≤n,使得φ(A)=(∏ni=1σi(aii))A,对A=(aij)n×n∈Tn,并且对任意的k=1,2,…,n,以及任意的a∈Imσk,方程xσ1(x)σ2(x)…σn(x)=a在F*中存在唯一解.  相似文献   

4.
本文的目的是証明下面的定理:設h(—d)表示以—d为判別式原型的类数,則有这里k为自然数,φ(n)为尤拉函数,τ_k(n~2)为n~2=x_1x_2……x_k的正整数的解数。本定理当k=2,3,4,5时改进了及的相应結果。  相似文献   

5.
R~∞={x:x=(x_1,x_2,…,x_n,…)}, R_0~∞={x:x=(x_1,x_2,…,x_n,0,0,…)}, R~n:n维实空间, P_n:R~∞→R~n上的映照,P_nx=(x_1,x_2,…,x_n), B(R~∞):R~∞中由乘积拓扑所确定的Borel代数, M(R~∞);B(R~∞)上的几率测度全体, μ_t:对于t∈R~∞,μ∈M(R~∞)定义μ_t(A)=μ(A-t),(?)A∈B(R~∞), μ_1《μ_2:μ_1关于μ_2全连续,  相似文献   

6.
在[1]中我们引进了空间L_p(φ),E_p(φ),在本文中我们把Бесоб空间B_(p1q)~(r)中[见2]的L_p范数换为L_p(φ)范数,新得的空间称之为B_(p~1q)~(r)(φ)。我们将证明B_(p~1q)~(r)(φ)的一个迹定理,并把这个方法应用到初值问题的差分法的误差估计上,而得出差分法的L_p(φ)误差估计。§1.以E_n表n维欧氏空间,x=(x_1,…,x_n),令f(x)=L_p(φ),?f?_(LP)(φ)简记为?f?_(p,φ),f(x)的k阶L_p(φ)光滑模定义为  相似文献   

7.
§1.引言 設R为一个S-整域(卽其一切非单位构成R的一个极大素理想),其极大素理想为P。設R的商体为F,剩余类体R/P为F,假定ξ=(ξ_1,……,ξ_n)为F的某一扩体中n个元之集合,而ξ=(ξ_1,……,ξ_n)为F的某一扩体中n个元的集合。我們說ξ是ξ关於R的特殊化,写成,如果R→R/P=F的自然同态可以推广成R[ξ]到F[ξ]的同态。以f(x_1,……,x_n)表示R上的多項式,那么f(x_1,  相似文献   

8.
对给定n+1维欧氏空间R~(n+1)中的m个点x_1=(x_(11),x_(12),…,x_(1n+1)), x_2=(x_(21),x_(22),…,x_(2,n+1)),…,x_m=(x_(m1),x_(m2),…,x_(mn+1)),证明了存在最优超平面β_0+β_1x_1+…+β_(n+1)x_(n+1)=0,使这组点到此超平面的加权垂直距离和Q(β)=(∑~(n+1)_(j=1)β~2_j)~(-1/2)∑~m_(i=1)w_i|β_0+∑~(n+1)_(j=1)β_jx_(ij)|=min (w_i>0,i=1,2,…,m);提出并证明了最优超平面β_0+β_1x_1+…+β_(n+1)x_(n+1)=0应满足的3个必要条件,从而给出了求最优超平面的方法.  相似文献   

9.
§1.H.B.Phillips曾推廣了Hamilton-Cayley的定理如下: 設F(x_1,…,x_r)=A_1x_1+…+A_rx_r,其中A_i為n階方陣,x_i為不定量,f(x_1,…,x_r)=det F(x_1,…,x_r)。如果M_1,…,M_r為兩兩可交換的n階方陣使F(M_1,…,M_r)=0,則M_1,…,M_r滿足多項式f(x_1,…,x_r)即f(M_1,…,M_r)=0。 A.Ostrowski又將Phillips的結果推廣:以φ(x_1,…,x_r)表示F(x_1…,x_r)的所有n-1階子式的最大公因式,且命f(x_1,…,x_r)/φ(x_1,…,x_r)=f_1(x_1,…,x_r),則M_1,…,  相似文献   

10.
考虑自治系统: dx_i/dt=f_i(X_1,X_2,…,X_n)(i=1,2,…,n)(1)其中右端函数满足解的存在与唯一性定理条件。定义1 相空间的点y称为点x_0的ω极限点,如果存在时间序列{t_n}当n→+∞,t_n→+∞且y=lim x(t_n,x_0)。n→∞定义2 给定环面体G的截面S(在n—1维超平面上)称为G的拟截割,如果对任意~x∈S,有S_x?S,x∈S_x和δ=δ(x)>0,使得φ((-δ,δ),S_x)为R·中包含x的开集,这里φ(t,P)为方程(1)满足初值x(0)=P的解。  相似文献   

11.
华林問題是解析数論的一个重要問題。1952年,Roth証明了每个充分大的整数n=sum from i=1 to 50(x_i~(i+1)),其中x_i为非負整数,Vaughan改进了Roth的結果,并进一步考虑了素数冪和的問題,于1971年証明每个充分大的正偶数n=sum from i=1 to 30(p_i~(i+1)),其中p_i为素数。本文对Vaughan的結果作了較重大改进,先用最优化的思想改进了計算指数密率的方法,即証明了下列定理1.設自然数k_1≥k_2>k_3>…>k_s,則集合{x_1~(k_1)+x_2~(k_2)+…+x_s~(k_s)}的指数密率v≥(θ_1/k_1)+(θ_2/k_2)+(θ_3/k_3)+…+(θ_s/k_s)其中,θ_1=θ_2=1, 若θ=θ_(i-1)=…=θ_2。(i=2,3,…,s—1) 运用定理1,采取新的分組方法并利用Davenport引理、华罗庚对优弧部分的估計及堆垒素数論方面的一些結果,得到下列定理2.每一个充分大的正奇数n=sum from i=1 to 23(p_i~(i+1))其中p_2为素数。  相似文献   

12.
设x=(x_1,x_2,…,x_n)为R~n中有界区域G内的点,G的边界(?)G:x_i=x_i(S_1,…,S_(n-1)),i=1,…,n为光滑闭曲面,其外法线方向为(?),我们考虑泛函 J_n=integral from t_1 to t_2 integral from G(F(x,t,u,u_x,u_t)dxdt+integral from t_1 to t_2 integral from (?)G(f(s,t,u,u_s)dsdt (1)的局部极值问题,这里u=u(x,t),而u_x=(u_(x_1)…,u_(x_n)),u_s=(u_(s_1),…,u_(s_(n-1))),u~(s_j)=sum from i=1 to n ((?)u/(?)x_i(?)x_i/(?)s_j,j=1,…,n-1,又记区域V=(?)×[t_1,t_2],并设函数u(x,t)∈c~2(V),F和f分别在V和(?)G×[t_1,t_2]上二次连续可微。  相似文献   

13.
设?_n是n个文字的n!阶对称群,ρ=(1~(α_1)2~(α_2)…n~(α_n))是?_n的一类,亦即ρ的任一元素可分解为α_1个长度为1的循环节,α_2个长度为2的循环节,…,a_n个长度为n的循环节的乘积,而α_1 2α_2 … nα_n=n设(λ)=(λ_1,λ_2,…,λ_m)为n的一个划分,亦即非负整数λ_i≥0,满足λ_1≥λ_2≥…≥λ_m,使得λ_1 λ_2, … λ_m=n, m≥n.设x_ρ~((λ))为类ρ对应于划分(λ)的特征,我们熟知,如果记p(n)为n的所有可能的划分的个数,则?_n有p(n)类,p(n)个划分,于是恰好有p(n)~2个特征.  相似文献   

14.
约定 A(≥0)>0为(半)正定 Hermite 矩阵。如果复矩阵 A=(a_(ij))(∈C~(n×n))的特征值都是实数,规定其特征值满足λ_1(A)≥…≥λ_n(A),用σ_1(A)≥…≥σ_n(A)表示 A 的n 个奇异值,规定{δ_1(A),…,δ_n(A)}与{a_(11),……,a_(nn)}为同一集合且|δ_1(A)≥…≥|δ_n(A)|。当实向量 x=(x_1,…,x_n)与 y=(y_1,…,y_n)的分量按递减顺序排列为 x_[1]≥…≥X_[n]与 y_[1]≥…≥y_[n]时,若(?)X_(i)≤(?)y_[i],k=1,2,…,n,则称 y 弱控制 x,记为 x相似文献   

15.
本文将[1]中结论分别在群上和环上作了进一步推广,得到如下结果: 定理1 设G为群,u,v为G中元,则G对“O”:xOy=xv~(-1)u~(-1)y(2)作成群,且G与在φ:x|→uxv,x∈G下同构。反之,若是群G中元对新运算(?)作成的群,且G与在x|→uxv下同构,则(?)就是(2)式定义的O。定理2 若群G有有限方指数n,则G对“O”:xOy=(x~rv~(-1)uy~r)~s(3)成群,其中rs≡|(mvdn),u、v为G中两元素,且G与在φ:x|→(uxv)~s下同构。反之,若是G中元素对运算(?)作成的群,且G与在φ:x|→(uxv)~s下同  相似文献   

16.
本文研究向量微分方程 (dx)/(dt)=f(t,x) (1) 或 (dx)/(dt)=f(x) (2)其中x=(x_1, x_2, …, x_n)为n維向量,f(t, x)或f(x)是分别定义在0≤t<+∞,‖x‖=2~(sum from =1 to n x_i~2)<+∞或‖x‖<+∞的n維連续向量函数,它们满足方程(1)或(2)的解的存在唯一性定理及解对初始值的連续依赖性定理的条件。当考虑稳定性问题时我们  相似文献   

17.
Walsh引进函数φ_0(x+1)=φ_0(x),φ_n(x)=φ_0(2~nx)。由此得到[0,1]上完全正交系{φ_n(x)}。这里φ_0(x)=1, φ_n(x)=φ_n_1(x)·φ_n_2(x)…φ_n_r(x), n=2~n1+2~n2+…+2~nr,而n_(i+1)相似文献   

18.
本文给出有限交换群的阶方程的特征性质,并证明了定理1.p是质数。若p~m|n,p~(m 1)|n,则n阶交换群G的阶方程有性质7°存在p~(α1),p~(α2),…,p~(αu),0<α_1≤α_2≤…≤α_u,使G的阶方程有项1,kjφ(pj),j=1,2,…α_u, 其中α_0=0,α_(t-1)相似文献   

19.
本文证明了满足换位子恒等式“(xy-yx)~n=(xy-yx)~mP”的近似环的结构。定理1 R是d。g近似环,且有单位元1,(?)x,y∈R,存在正整数m=m(x,y),n=n(x,y),m>n及p(t)∈Z(t),使(xy-yx)~n=(xy-yx)~mP(xy-yx);如果R还满足(?)x,y∈R,xy-yx≠O就有(xy-yx)~l≠0,(?)l∈Z~+,则R为交换环。定理2 R是近似环,(?)x,y∈R,存在正整数m=m(x,y),n=n(x,y),m>n,及p∈R,使(xy-yx)~n=(xy-yx)~mP且如xy-yx≠0就有(xy-yx)~l≠0,(?)l∈Z~+,则R的全体(?)零元形成R的一个理想N;R/N是近似环R_i的亚直和。其中R_i为下列情形之一:(1)交换环,(2)近似域,(3)xR_i=Ri((?)0≠x∈R_i)。  相似文献   

20.
尤格(Юнга)定理是这样叙述的:“设函数,(x,y)对分量x、y分别是连续的,而且对其中一个分量是单调的,则f(x,y)是连续函数。”我们现在把这个定理推广到n维向量函数。和二维空间一般正度量函数。定理1 设函数f(x)对各个分量分别连续,对其中n-1个分量分别单调,则f(x)是连续函数。证明当n=a时,由尤格定理知是成立的。下面用数学归纳法来证明。假设任意,n-1维的向量函数f(x)(其中x=(x_1,x_2,…,x_n-1))如果对每个分量连续,对其中n-2个分量分别单调,则f(x)连续。然后来推导:任意n维向量函数f(x)(x=(x,x,)),如果对每个分量连续,对其中n-1个分量分别单调,则f(x)连续。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号