首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
通过对SM490YB实验钢进行热轧和超快速冷却实验,研究了不同工艺参数对实验钢厚度方向不同位置的显微组织的影响,分析了SM490YB实验钢的强韧化机理.实验结果表明:随着终冷温度的降低,实验钢厚度方向相同位置的贝氏体和针状铁素体含量逐渐增加,多边形铁素体和珠光体含量减少;实验钢的强度和低温韧性随着终冷温度的降低而增加,终冷温度为480℃、返热温度为554℃时,力学性能最佳.冷却速率的增加可以提高实验钢的强度,但过快的冷却速率会损害材料的韧性.  相似文献   

2.
通过拉伸和金相实验分析研究了控轧控冷工艺对酒钢X65管线钢的力学性能和显微组织的影响.结果表明:在一定范围内控制开轧和终轧温度,变形过程中提高强制冷却速度,降低终冷温度,可以明显提高X65钢的力学性能,得到较多均匀的针状铁素体组织.  相似文献   

3.
通过拉伸和金相实验分析研究了控轧控冷工艺对酒钢X65管线钢的力学性能和显微组织的影响.结果表明:在一定范围内控制开轧和终轧温度,变形过程中提高强制冷却速度,降低终冷温度,可以明显提高X65钢的力学性能.得到较多均匀的针状铁素体组织.  相似文献   

4.
利用Gleeble 3800热模拟实验机、透射电镜和纳米压痕仪器等研究了终冷温度和保温时间对Nb-Ti微合金钢组织、析出行为的影响规律.结果表明:随终冷温度的升高,铁素体晶粒尺寸增大,珠光体增多,贝氏体逐渐减少,维氏显微硬度随终冷温度先升高后降低,当终冷温度为640℃时,实验钢的维氏显微硬度最大;当终冷温度为640℃时,试样中存在排列规则的相间析出和弥散分布的随机析出两种析出形式.当保温时间为0s时,析出物以相间析出和弥散析出为主;当保温时间为100s时,析出物以弥散析出为主.随保温时间增加,实验钢的纳米硬度降低了140MPa.  相似文献   

5.
以含Nb微合金化试验钢为研究对象,通过3个不同精轧温度区间的轧制+层流冷却、空冷、超快冷的TMCP工艺获得了含有铁素体、贝氏体、马氏体以及少量残余奥氏体的显微组织.分析了控轧温度区间对含Nb微合金化试验钢显微组织和力学性能的影响.结果表明,在控冷工艺参数相近的情况下,随着精轧开轧温度和终轧温度的降低,试验钢的抗拉强度减小,屈服强度、延伸率和强塑积增大.其中采用850~800℃的温度区间精轧+层流冷却、空冷、超快冷的TMCP工艺时,试验钢的屈服强度、延伸率和强塑积分别达到了513MPa,35%和25235MPa.%的最大值.  相似文献   

6.
对不同终冷温度的X100管线钢进行了动态示波冲击试验,结合断口形貌及微观组织观察,研究了试验温度、终冷温度及组织对冲击断裂过程及止裂性能的影响.结果表明,终冷温度为400℃时,钢的裂纹形成能及扩展能较高,止裂性能良好,仅-60℃时出现少量分层;终冷温度为520℃时,随试验温度降低,裂纹形成能和扩展能逐渐降低,止裂性能逐渐下降,断口中韧窝脆性倾向增强,分层加重.冲击过程中的最大冲击载荷随试验温度的降低而近似线性增加.组织的均匀、板条边界和晶界处的膜状、细小点状M/A岛、细小析出相均有益于钢的冲击韧性及止裂性能.  相似文献   

7.
对一种不添加其他微合金元素的低碳Nb-B微合金贝氏体钢在不同工艺的组织和力学性能进行研究.结果表明,终轧温度为850℃,冷却速度10℃/s左右,终冷温度560℃时,实验钢的屈服强度和抗拉强度分别为495和720MPa,-20℃冲击功和延伸率分别为159 J和23%,实验钢组织为粒状贝氏体和准多边形铁素体;终冷温度降至480℃,实验钢组织为粒状贝氏体,屈服强度和-20℃冲击功分别提高51 MPa和93 J;终轧温度降至810℃时,屈服强度相对增加24MPa;冷却速度增大到25℃/s,组织为粒状贝氏体、少量的针状铁素体和板条贝氏体,屈服强度和抗拉强度分别为655和777 MPa,而-20℃冲击功和...  相似文献   

8.
变形工艺对热轧双相钢显微组织和性能的影响   总被引:1,自引:0,他引:1  
以热轧双相钢为研究对象,在实验室通过热轧实验,研究了变形量、卷取温度、终轧温度对高强热轧双相钢组织细化和力学性能的影响.通过研究可以发现,变形工艺参数对热轧双相钢的显微组织和力学性能有很大的影响,热轧双相钢的显微组织主要有三种典型微观形貌,而这三种典型形貌又赋予了双相钢不同的强韧化机制和力学性能.在实验室条件下,开发了780 MPa级以Mn,Si为主要添加元素的热轧双相钢生产工艺,可以使热轧双相钢的屈服强度达到要求的级别,并且断后伸长率良好.  相似文献   

9.
在Gleeble-1500热应力/应变模拟实验机上热压缩模拟Q460C含铌钢的轧制过程,并控制终轧温度和轧后冷却速度.通过观察金相组织和膨胀曲线研究控轧控冷对Q460C钢组织和相变的影响,分析了轧制过程中可能诱导其裂纹产生的原因.结果表明,Q460C钢组织分布不均、控轧控冷工艺不合理均可能造成其裂纹的产生,提高终轧温度可促进相变提前发生,而在较高终轧温度下,轧后冷却速度对Q460C钢组织变化的影响很小.  相似文献   

10.
采用OM、TEM和EMPA方法对比研究了超快冷工艺及终轧温度对355 MPa级钢板心部异常带状组织的影响.结果表明,950℃高温终轧及超快冷钢板(UC1钢)心部带状组织完全消失,900℃终轧及超快冷钢板(UC2钢)心部则形成了微弱带状组织,而轧后15℃/s层流冷却钢板(LC钢)心部则形成了包括马氏体/奥氏体低温相的严重带状组织.热力学计算显示,钢板心部偏析降低铁素体相变温度144℃,从而提高消除带状组织所需临界冷速到8℃/s.温度计算得到UC1和UC2钢板心部冷速分别达12.1和13.4℃/s,而LC钢板心部冷速只有5.5℃/s,表明超快冷足以抑制心部带状组织,但降低终轧温度削弱了这个效果,而层流冷速则无法抑制带状组织.  相似文献   

11.
两阶段轧制后,采用超快冷对实验钢进行冷却,研究了超快冷终冷温度对高强桥梁钢组织性能的影响.结果表明,超快冷终冷温度显著影响实验钢的组织特征,随着超快冷终冷温度的降低,实验钢的显微组织由粒状贝氏体为主逐渐演变为板条贝氏体为主,且M/A尺寸显著细化.明确了超快冷终冷温度对实验钢力学性能的影响规律,且在236℃的超快冷终冷温度条件下,实验钢的屈服强度、抗拉强度、屈强比、-40℃冲击功和延伸率分别为745MPa,961MPa,078,1665J和168%,实现了强度、韧性和塑性的平衡,同时获得了低屈强比.  相似文献   

12.
通过直接淬火、QP、回火等工艺对一种低碳含铜钢进行热处理,并使用拉伸试验机、落锤冲击试验机、扫描电镜、电子探针、X射线衍射、透射电镜等手段对其力学性能、显微组织和冲击性能进行表征.在连续冷却淬火过程中观察到碳在马氏体和残余奥氏体间的动态配分现象,QP处理和低温回火可改善实验钢的冲击韧性;实验钢综合力学性能良好:强塑积大于20 GPa%,抗拉强度超过1 400 MPa,延伸率约14%,室温冲击功高于40 J.结果表明,所开发的实验钢可以满足热冲压工艺对成形淬火一体化的要求,可作为具有高强塑积的热成形用钢.  相似文献   

13.
研究了轧后中温缓慢冷却与中温等温两种不同的热机械控制工艺( thermomechanical control process, TMCP)对硅锰系贝氏体钢的组织与性能的影响。通过拉伸试验机测试试验钢的力学性能,利用扫描电子显微镜、电子背散射衍射等分析手段对试验钢进行显微组织结构分析,并利用X射线衍射测定残余奥氏体含量。结果表明:随着轧后连续缓慢冷却开始温度的升高,贝氏体钢的抗拉强度、硬度及拉伸应变硬化指数n值有所提高,伸长率和冲击韧性降低,屈强比先降低后升高。随着轧后等温时间的延长,贝氏体钢的抗拉强度与屈强比先降低后升高,伸长率及冲击韧性先升高后降低。相对于等温制度,连续缓慢冷却可得到更好的综合力学性能,强塑积明显高于前者,伸长率比前者高20%以上。  相似文献   

14.
为研究冷却方式对聚萘二甲酸乙二醇酯(PEN)单聚合物复合材料(SPC)的影响,分别采用了随机冷却、骤冷和自然冷却的方式,过冷压制成型了PEN SPC样品;使用DSC热分析法确定了冷却速度对PEN基体的影响;使用万能试验机比较了PEN SPC样品的力学性能. 研究结果表明:随机冷却的方式得到的PEN SPC的拉伸强度最小,拉伸模量最高,是由冷却速度慢导致结晶引起的;骤冷的方式得到的拉伸模量最低,是由冷却速度过快导致无定形引起的;自然冷却方式得到的拉伸强度最高,是由于适中的冷却速度有利于基体渗透.   相似文献   

15.
为了研究不同含氮量的SWRH82B盘条在组织和性能等方面的差异,利用液压万能试验机对盘条进行拉伸试验,利用扫描电镜(SEM)和透射电镜(TEM)观察盘条的微观组织、拉伸断口及第二相析出情况。结果表明:增氮使索氏体组织的层片间距更细小;增加1.38×10-4的氮可使盘条的屈服强度提高8 MPa、抗拉强度提高28 MPa、延伸率降低1.8%、断面收缩率降低5.8%;高氮盘条比低氮盘条的拉伸断口上有更多的夹杂物;高氮盘条中的析出物更多且分布较弥散,析出物主要集中在位错线或原奥氏体晶界上,经标定,析出物中含有细小的V(C,N)颗粒。  相似文献   

16.
A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.  相似文献   

17.
为了使新型高强钢更好地在冲击领域得到应用,采用等温盐浴方法对新型高强度钢进行热处理.通过OM、SEM、TEM对材料的微观组织进行观察,采用万能试验机对材料进行准静态拉伸力学性能测试,通过分离式霍普金森压杆(SHPB)对材料进行动态性能测试并捕捉临界应变率下萌生发展的绝热剪切带形貌.研究结果表明:随着等温温度的升高,对应材料的主要组织由马氏体+下贝氏体,马氏体+下贝氏体+上贝氏体变化为马氏体+上贝氏体,材料的屈服强度和塑性逐渐降低.330℃等温处理的材料绝热剪切带萌生的临界应变率为3种等温处理材料中最低,上贝氏体组织的出现使材料对绝热剪切变形的敏感性降低.   相似文献   

18.
晶粒细化和分裂增韧可使两相区轧制的层状超细晶钢板具有高强度同时韧性优异.前期研究发现轧后空冷生成的层状超细晶钢板,存在屈强比偏高的问题,高达0.9.本研究通过轧后淬火在层状超细晶组织中引入马氏体的方法降低屈强比.研究发现,在750℃和810℃轧制后淬火,层状超细晶组织中可生成体积分数约为14%的马氏体.此部分马氏体使拉伸过程中呈现连续屈服行为,提高加工硬化率,使钢板的屈强比降至0.7以下,解决了屈强比偏高的问题.此外,实验钢在具有高强度的同时,韧性优良.  相似文献   

19.
对超快冷条件下X80管线钢屈强比的影响因素进行了系统研究;结合光学电镜、扫描电镜和透射电镜对冲击断口和组织的观察,得出了超快冷条件下低屈强比X80管线钢强韧性匹配的最优工艺.结果表明:随着超快冷终止温度的降低,实验钢强度和屈强比均呈升高趋势;超快冷终止温度为655℃时,实验钢组织由针状铁素体、贝氏体和M/A岛组成,强韧性匹配良好;在"超快冷+空冷+层流冷却"的冷却模式下,随着空冷时间的延长,实验钢的屈强比逐渐降低;超快冷的应用在提高实验钢强度的同时有利于实现X80管线钢的低屈强比,为高级别的抗大变形管线钢的开发奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号