首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为研究转炉的局域搅拌和混匀效果,以55 t转炉为原型,建立转炉水模型,在不同喷吹条件下,通过多点测量的方式,对转炉进行水模拟实验。结果表明:纯底吹条件下,底部中心处的混匀时间较短;顶吹条件下,底部中心处搅拌最弱;顶底复吹条件下,随着枪位的升高,熔池内4个测量点的混匀时间均先变小后增大,并找到平均混匀时间最短的底吹方式,在此底吹布置方式下的枪位为0.16 m时,侧壁面的上部和下部以及环流中心附近混匀效果较好,枪位为0.20 m时,底部中心处的混匀时间最短。进一步比较底吹对称布置和非对称布置下的搅拌和混匀效果可知,底吹喷嘴的非对称且集中布置更有利于改善转炉内流场,减少搅拌弱区。  相似文献   

2.
采用FLUENT大型商业软件和水模拟装置对某厂50tLF炉底吹氩喷嘴的布置方式进行了数值模拟和水模拟研究.分别讨论了单孔、双孔中心对称和双孔轴对称三种底吹氩喷嘴布置方式对钢液混匀时间的影响和钢液表面的卷渣情况.结果表明,在相同的吹氩量下,采用双孔轴对称底吹氩钢液混匀时间最短,在整个钢包内部及表面,钢液流动速度均匀而稳定,基本消除了搅拌死区,可以有效防止钢液卷渣,并为夹杂物的去除提供良好的动力学条件.  相似文献   

3.
钢包底吹氩工艺参数对精炼效率有重要影响,本文以1:4的比例建立150t钢包的物理模型,钢包内钢液混匀时间受到吹气位置及吹气量的影响,通过对底吹气位置、气量进行实验研究,结果表明,单孔底吹的标态吹气量大于3.36 L/min时混匀时间变化不明显;单孔吹气时底吹喷嘴距离钢包中心0.5r时混匀时间最短.双孔底吹合适的位置是距钢包中心0.7r.  相似文献   

4.
在实验室建立顶底侧吹转炉吹炼物理模型,实验研究了顶底侧吹工艺参数对顶底侧吹转炉熔池搅拌混匀的影响.结果表明,侧吹气体流量对熔池混匀时间有重要的影响,存在一个临界侧吹气体流量,在低于临界侧吹气体流量范围,随侧吹气体流量增加,熔池的水平搅拌作用逐渐增强,熔池的混匀时间随之下降,侧吹气体达到一定的侧吹气量临界值后,熔池混匀时间显著降低,进一步提高侧吹气量,熔池混匀时间不再有大的变化.应在保证足够的侧吹气体流量的前提下,尽量采用适当小断面的侧吹枪.合适的底吹供气强度有助于顶底侧吹转炉熔池搅拌混匀,顶枪枪位和顶吹气体流量的变化对顶底侧吹转炉熔池混匀影响不大  相似文献   

5.
以某炼钢厂180 t钢包炉为原型,根据相似理论,通过水模型实验,分别考察了精炼过程中底吹位置、加料位置及底吹气量等操作参数对钢包内钢液混匀状况的影响,得出了各参数对钢包混匀状况的影响规律.综合考虑水模型实验过程中的现象和其他因素,得出180 t钢包炉最佳操作参数:最适宜底吹位置在0.3R附近,最适宜的加料位置在底吹喷嘴正上方,正常精炼时的底吹搅拌气量为40~90 m3/h;钢包炉精炼及微调成分后,最佳取样位置在钢包炉加料部位,取样前应至少搅拌2 min.  相似文献   

6.
针对包钢150tLF炉精炼过程中双孔吹氩搅拌钢液问题,按1:4比例搭建水模型实验平台,选取吹气量、加料位置和吹气孔布置为实验因素,以混匀时间作为评价指标,根据现场条件确定各因素下的水平数进行实验研究;运用计算流体力学原理,以Fortran语言为编程工具,采用全浮力模型对多个工况下钢液的流动进行模拟研究.研究表明:双孔吹气条件下,吹气量、加料位置和吹气孔布置对钢液的混匀过程均有一定影响;双孔夹角越小越有利于钢液的成分和温度均匀;加料位置应在搅拌对称面的流动活跃区加入.  相似文献   

7.
在不同氧枪倾角和角度间距下,建立氧气底吹炉仿真模型,分析不同工况对熔体流动特性的影响。研究结果表明:两排氧枪角度设置对底吹炉内流动特性的影响主要体现在炉径方向。氧枪倾角会对核心搅拌区的空间位置产生“偏移”作用,控制核心反应区向氧枪所在一侧炉壁偏移程度;角度间距会对核心搅拌区的扰动状态产生“分散”作用,控制搅拌源形成的核心搅拌区聚散程度。为了更好地调控大型底吹炉熔池气动搅拌特性,将两排氧枪角度设置为0°&15°组合较为合理,熔池内有较好的气动搅拌强度和气体分散效果,进而提高熔炼效率,且未产生熔体恶性喷溅。  相似文献   

8.
建立了底吹喷吹石灰石粉的冷态模型:用水模拟钢水,用浸盐的空心Al2O3模拟石灰石粉,用真空泵油模拟炉渣,研究了复吹转炉底吹喷粉的重要参数粉剂分布和粉剂穿透比.考察了不同底吹布置条件下的粉剂分布,利用图像处理法确定了最佳的底吹布置方式.在最佳底吹布置方式条件下,考察了不同固气比和粉剂粒度对粉剂穿透比的影响;结果表明穿透比随固气比和粉剂粒度的增加而增加,确定了实验条件下最佳固气比为30~40,粉剂粒度为0.212~0.380 mm.  相似文献   

9.
复吹转炉底吹喷粉的物理模拟   总被引:1,自引:0,他引:1  
建立了底吹喷吹石灰石粉的冷态模型:用水模拟钢水,用浸盐的空心Al2O3模拟石灰石粉,用真空泵油模拟炉渣,研究了复吹转炉底吹喷粉的重要参数粉剂分布和粉剂穿透比.考察了不同底吹布置条件下的粉剂分布,利用图像处理法确定了最佳的底吹布置方式.在最佳底吹布置方式条件下,考察了不同固气比和粉剂粒度对粉剂穿透比的影响;结果表明穿透比随固气比和粉剂粒度的增加而增加,确定了实验条件下最佳固气比为30~40,粉剂粒度为0212~0380mm.  相似文献   

10.
底吹氩钢包内三维流场的数值模拟   总被引:1,自引:0,他引:1  
利用商业Phoenics软件对某钢厂230 t 钢包底吹氩精炼钢包内钢液的流场进行数值模拟计算,并从流场分布和湍动能分布等角度分析了不同喷嘴布置和不同吹气量对钢包内钢液混匀效果的影响.结果表明,底吹氩钢包内透气元件采用0.6R-β布置可避免钢液对包壁所造成的严重冲刷,且有利于减少钢包内钢液的混匀时间,从而获得较为理想的搅拌效果.  相似文献   

11.
采用冷态转炉对转炉熔池局域流动和传质效果进行了研究.选用不同氧枪喷头、枪位和熔池形状进行实验,通过测量熔池各区域的电导率值来研究熔池局域传质和混匀效果.根据实验结果,分析了各因素对熔池传质、死区分布、混匀时间及熔池速度均匀性等的影响.研究结果发现:标准熔池(径深比为3.1)中,熔池死区主要位于熔池底部侧壁和环流中心处;浅型熔池(径深比为5.2)中,熔池死区主要位于熔池侧壁.适当增加氧枪喷孔倾角和熔池径深比,有利于增大熔池环流半径,改善熔池内部流动,减小熔池内部死区.  相似文献   

12.
针对CAS精炼过程中罩外有大量气泡溢出的问题,在相似性原理的基础上建立了CAS钢包的水模型.研究了CAS精炼过程中底吹气量、浸渍罩插入深度和不同底吹位置对钢包混匀时间的影响.实验发现:浸渍罩的中心与底吹气孔的中心同轴时,能有效地防止罩外气泡溢出.对于300t钢包,底吹方案优化后,底吹位置选在距钢包中心0.3r一0.4r(r为钢包底部半径),精炼时底吹气量为600L·min-1,排渣时底吹气量选在500L·min“左右,浸渍罩浸入深度选为180~225mm.工业试验表明,优化后的底吹方案有效地解决了罩外气泡溢出的问题,并且提高了LCAK钢液的洁净度和可浇注性.  相似文献   

13.
建立了氧枪喷吹石灰石粉的冷态模型,用水模拟钢水,用浸盐空心三氧化二铝模拟石灰石粉,用真空泵油模拟炉渣,研究了熔池的均混时间、粉剂分布和粉剂穿透比.考察了底气流量和枪位对均混时间的影响,同时在优化的工艺条件下,测定了熔池的粉剂穿透比和粉剂分布,确定了实验室条件下最佳操作工艺.结果表明,顶吹喷粉条件下氧枪枪位应略微下降,枪位为258mm,底气流量为20m3/h;粉剂穿透比随固气比和粉剂粒度的增加而增加,确定了实验条件下最佳粉剂粒度为0212~0380mm.  相似文献   

14.
以某钢厂180t的RH真空精炼装置为研究原型,依据相似准则建立物理模拟试验装置,进行2因素(喷吹角度和供气流量)作用下3水平的水模型正交试验研究,深入揭示RH真空精炼过程中循环流动状态变化规律,并为其工艺和操作参数的确定提供技术依据.结果表明:供气流量及喷吹角度均会影响精炼效率,供气流量影响更显著;存在最优的吹氩方案,即流量为20m3/h,喷吹角度为45°时,混匀时间最短;在不同供气流量下,循环流量增加幅度随喷吹角度的增大而逐渐减小,最佳喷吹角度在25°~35°之间.  相似文献   

15.
以某钢厂180 t钢包为原型,进行超声波改善钢包熔池搅拌效果的冷态模拟实验。通过记录pH计示数变化研究底吹气体搅拌均混时间及超声波搅拌均混时间。实验结果表明,在底吹空气水模实验中,当吹气位置在距离中心为0.33R,流量为0.1 m3/h时,底吹气体搅拌所需的均混时间最短为50 s;超声波水模实验中,当波源伸入钢包的中心液面下25 cm处,输出功率1.8 kW,均混时间最短为35 s;在超声波和底吹气体联合实验中,当吹气位置在距离中心为0.33R,流量为0.1 m3/h,波源伸入钢包的中心液面下25 cm处,输出功率1.8 kW时,均混时间最短为48 s;可以看出超声波可明显缩短钢包均混时间,改善钢包精炼动力学条件。  相似文献   

16.
通过底吹炼铜转炉水模型实验,研究底吹造锍转炉中喷嘴数量、喷嘴角度、喷嘴直径、气流速度等因素对转炉熔池气泡大小、气含率及液面喷溅的影响规律.结果表明:喷嘴直径的增大不利于气泡微细化,且加剧了液面喷溅现象;喷嘴角度的增大有利于减小喷溅,但气含率下降;气流速度的增大有利于气泡微细化,显著提高气含率,但喷溅比较剧烈.与单喷嘴喷吹相比,在总喷气量相同的条件下,双喷嘴喷吹具有明显的优势,两种方法的气泡微细化程度差别不大,但是双喷嘴的喷溅情况明显减弱;双喷嘴夹角44°时能获得最大的气含率,约为9%.  相似文献   

17.
以某钢厂210tRH真空精炼装置为原型,根据相似原理建立1﹕4水模型,研究了吹气量、浸入深度、真空度以及气孔堵塞对混匀时间的影响。结果表明,RH混匀时间随着吹气量的增加而呈现减小的趋势;随着浸入深度的增加先减小后增大,并存在最佳浸入深度480 mm;随真空室压力的减小而减小;随着吹气孔堵塞个数的增加先减小后增加。利用粒子成像测速技术( particle image velocimetry,PIV)测量了RH精炼过程钢包内二维流场,与数值模拟结果对比,发现钢包内的流体运动主要是从下降管到上升管的循环流动以及下降管周围的回流运动,不活跃区主要集中在渣-钢界面以下浸渍管浸入深度范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号