首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考虑变位系数的直齿轮啮合特性分析   总被引:1,自引:0,他引:1  
使用有限元方法研究直齿轮传动的啮合特性.基于APDL建立变位直齿轮副参数化有限元模型,采用显式动力学分析软件LS-DYNA对齿轮副啮合过程进行数值仿真,得到齿轮啮合产生的动态接触力以及动态传递误差,研究了齿轮变位系数对于齿轮啮合特性的影响,将动态传递误差与静态传递误差进行对比,分析了二者产生差异的原因.研究表明不同变位系数下,啮合频率都是主要的频率成分,其他频率成分的幅值受到变位系数的影响,接近固有频率的倍频幅值较大.静态传递误差与动态传递误差在时域和频域上都存在较大区别.  相似文献   

2.
行星齿轮箱振动信号包含多种频率成分和噪声干扰,频谱具有复杂的边带结构,容易对故障识别造成误导甚至引起错判.在不同故障状态下,行星齿轮箱振动信号的多域特征量将偏离正常范围且偏离程度不同,根据这一特点,提取振动信号的时域、频域特征参量用于故障识别.为了避免传统分析方法中负频率及虚假模态问题,增强对噪声干扰的鲁棒性,采用局部均值分解法将信号自适应地分解为单分量之和,提取时频域单分量瞬时幅值能量.针对多域特征空间构造过程中出现的高维及非线性问题,采用流形学习对数据进行降维处理.提出基于改进的虚假近邻点的本征维数估计及最优k邻域确定方法,并通过等距映射对多域特征空间进行降维分析.对于行星齿轮箱实验信号,根据样本流形特征聚类结果,分别识别出了太阳轮、行星轮和齿圈的局部故障,从而验证了上述方法的有效性.  相似文献   

3.
为了研究复合行星齿轮系振动信号频谱特征,以SD16再制造变速箱复合行星齿轮系为研究对象,建立系统动力学模型。通过系统转速特性、啮合频率以及啮合力计算分析,给出理想啮合力曲线。利用ADAMS仿真平台,对复合齿轮系动力学模型进行验证,并对双排行星架太阳轮与行星轮啮合力在系统绝对坐标系中x轴分量和y轴分量的时域和频域特性进行仿真分析,为再制造变速箱现场故障诊断频谱分析提供参考依据。仿真结果表明:啮合齿轮副啮合力时域波形与理想啮合力曲线基本一致,具有明显的波动性与周期性。在频谱分析中,齿轮副啮合频率的1倍频与2倍频为主要频率,存在明显的幅值调制现象。  相似文献   

4.
考虑太阳轮和行星架支承轴承的时变支承刚度,采用集中参数法建立节点外啮合行星齿轮系统齿轮-轴承耦合动力学模型,运用Rung-Kutta算法求解得到太阳轮和行星架的振动加速度响应;利用某型机械功率封闭试验台开展振动测试试验,基于小波变换获得降噪信号。研究结果表明:支承刚度时变情况下的振动加速度幅值要大于支承刚度为定值时的加速度。横向振动的试验值与理论值的误差为16.27%,在允许范围内,而纵向振动受重力影响存在较大偏差,同时,考虑时变支承刚度求解得到的振动加速度更接近试验结果,即支承刚度的时变性不可忽略。  相似文献   

5.
为了实现行星齿轮损伤程度的准确评估,保证行星齿轮损伤程度评估对于开展装备维修的指导作用,建立了行星轮系平移-扭转动力学模型,分析了行星轮系动力学仿真信号频谱幅值与裂纹程度的变化规律,提出了一种新的裂纹深度评估特征:故障频率及多倍频幅值累积量与啮合频率幅值之比(RCMFAM).与典型的时域、频域特征比较,所提裂纹深度评估特征与裂纹损伤程度具有良好的关联性和较强的一致性.利用齿轮正常、裂纹50%和断齿三种状态的实验数据进行验证,结果表明,所得评估结果与实际裂纹深度基本一致,验证了所提特征的有效性.   相似文献   

6.
行星齿轮箱中齿根早期裂纹损伤的故障特征微弱,导致其难以被识别.为揭示齿根早期裂纹的故障机理,采用集中参数法建立计入裂纹损伤效应的行星齿轮箱传动-结构耦合非线性动力学模型.首先,基于势能法建立含齿根裂纹损伤的齿轮副啮合刚度与传动误差计算模型,通过刚度激励函数与位移激励函数将裂纹损伤的效应纳入行星传动系统的非线性动力学模型,进而求解行星传动系统的振动响应,结果表明内、外传动支路之间的传动误差差异导致各支路载荷分配不均.其次,采用ANSYSWorkbench建立箱体结构的有限元模型.将行星传动系统中太阳轮、行星架以及内齿圈的支承反力施加于箱体结构的相应轴承座处,并通过窗函数计入行星架旋转对信号的调制效应以获取行星齿轮箱的振动信号;通过对箱体振动信号的频谱分析,提取了行星齿轮箱齿根早期裂纹损伤的故障特征.最后,搭建动力传动故障模拟实验台,对存在齿根早期裂纹损伤的行星齿轮箱进行了振动测试.仿真信号与实测信号基本一致,表明所建行星齿轮箱传动-结构耦合动力学模型能准确揭示行星齿轮箱齿根早期裂纹损伤的故障机理.行星齿轮箱中齿根早期裂纹损伤的故障特征表现为以啮合频率为中心、故障特征频率的分数倍频及行星架转频为间隔的调制边带.  相似文献   

7.
为了探究齿轮裂纹损伤对行星轮系编码器信号的影响机理,以利用编码器信号对行星齿轮箱进行健康监测,通过动力学分析研究了在齿轮裂纹损伤影响下行星轮系编码器信号的响应特性,并建立了响应的模型。首先采用能量法推导了齿轮存在裂纹时的时变啮合刚度算法,并构建了扭转动力学模型,用于获取编码器信号;在此基础上,通过将行星轮裂纹时的啮合刚度代入构建的模型中,求解得到行星轮裂纹影响下的编码器响应信号,分析编码器信号中蕴含的扭转振动特征;最后根据模型进一步研究了不同裂纹损伤下的行星轮系编码器响应信号。在实验台上进行了验证,结果表明:当行星轮出现裂纹故障时,编码器响应信号中蕴含的扭转振动出现明显冲击特征;随着裂纹损伤程度增加,编码器响应信号中扭转振动的冲击特征逐渐增强,其均方根值与峭度值明显增加,可有效评估故障损伤程度。该研究结果可为编码器信号用于行星齿轮箱健康监测提供理论依据。  相似文献   

8.
由于行星齿轮齿轮箱的振动信号具有非平稳、非线性特性,在复杂工况下,会对其早期微弱的故障信号造成干扰,不能正确地识别出故障信息。为解决以上问题,采用基于变分模态分解(variational mode decomposition, VMD)与灰狼优化支持向量机的故障诊断方法。利用中心频率近似方法,求解出了变分模态分解的参数K,对分解出的本征模态函数(intrinsic mode function, IMF)分量进行相关性分析,优选出分量进行信号重构。将重构信号进行故障特征提取,利用灰狼优化支持向量机的方法进行故障模式识别。实验结果表明:采用所提方法对行星齿轮箱的故障识别准确率达到99.375%。  相似文献   

9.
针对风力发电机变转速工况,采用集中质量参数法建立了变速风电行星齿轮传动系统的动力学模型,通过傅里叶级数将时变啮合刚度转化为啮合频率的函数形式,根据仿真的线性升速曲线,分析了变转速对齿轮副时变啮合刚度的影响,并利用龙格库塔法求得了传动系统中各齿轮的动态响应.在此基础上,对风电齿轮箱试验台升速过程测试信号进行分析,验证了所建变转速风电行星齿轮传动系统动力学模型的有效性.  相似文献   

10.
精确的故障诊断技术是运营安全性和维护高效性的重要支撑,基于动力学建模和频域特征分析,提出齿轮故障的波峰计数量化分类方法,以定量的方式实现故障类型的精确区分。首先,建立可以精确区分正常及擦伤、缺角和齿根裂纹等类型故障的齿轮动力学模型,获得齿轮故障的动力学响应特征,然后基于模型仿真信号的频域特征,提出精确区分不同类型故障的波峰计数诊断方法,最后,以转向架高保真故障模拟试验台开展齿轮故障模拟试验,验证动力学模型特征分析的准确性和量化诊断方法的有效性。研究结果表明:在一定的故障严重程度下,裂纹、擦伤、缺角、正常这4种状态的波峰计数依次减小,利用波峰计数方法可准确划分故障类型。本文研究为转向架齿轮故障动力学特性分析和故障诊断提供了重要方法。  相似文献   

11.
为研究采煤机摇臂齿轮系统啮频耦合规律及齿轮传动激励下摇臂壳体振动特性,进行摇臂振动特性实验.根据齿轮参数,计算啮合频率,得到齿轮传动激励频率成分.通过有限元模型及实验模态分析,得到摇臂固有特性.通过振动特性实验,测量摇臂振动加速度,进行时域及频域分析,得到传动系统啮频耦合规律.结果表明:传动系统启动冲击约为重载截割冲击的2倍;平稳运行时行星级振动峰值最大;摇臂形成了以第3、第5阶振型为主的弹性振动;行星级与惰轮级结合处频率耦合作用最强,主要形式为各特征频率倍频组合频率.频率耦合是造成摇臂共振的主要原因.  相似文献   

12.
EMD与ICA相结合的复杂转子系统早期故障诊断   总被引:2,自引:0,他引:2  
为了提取复杂转子系统微弱故障信息,对其早期故障进行预知诊断,针对某型涡桨发动机的减速器传动机构接连发生的齿轮毂裂纹故障问题,通过布置多组加速度传感器对多组正常齿轮毂和预制早期裂纹故障的齿轮毂进行正常试车下的振动信号采集。采用EMD(empirical mode decomposition)方法把测试信号分解成多个IMF分量,选取合适IMF分量利用基于非高斯性极大的ICA(independent component analysis)固定点算法进行混合再分离,得到了信息较为独立的特征分量。通过对特征分量进行解调分析得到能清晰反应故障状态的调制信号信息。结果表明基于EMD与ICA相结合的特征信号分离提取技术加包络解调法能有效地识别复杂转子系统早期故障信息。  相似文献   

13.
传统的振动系统特性参数识别方法对于非线性、非平稳信号的处理能力差,尤其对于阻尼比的识别精度较低.将Morlet小波变换和随机减量技术相结合识别振动系统的特性参数,首先利用随机减量技术提取振动的自由衰减响应信号,进而由Morlet小波变换对信号进行连续的小波变换处理得到小波能量谱,结合参数识别的基本理论及对时间-幅值坐标面曲线的半对数拟合结果得到振动系统的频率及阻尼比,数值仿真结果表明,提出的方法能有效识别系统的固有频率和阻尼比.将该方法应用于罐车模型流固耦合冲击试验研究,较好地识别出充液工况下振动系统的固有频率和阻尼比.  相似文献   

14.
针对行星齿轮传动系统轻载高速下存在碰撞振动的问题进行了研究,为此提出了研究方法和分析模型,即在大载荷下采用线性弹簧来模拟轮齿啮合弹性,在轻载下采用Hertz接触理论来计算齿轮副碰撞力,最终采用集中质量方法建立了行星齿轮传动系统碰撞振动分析模型。研究分析发现:在大载荷、连续增速下,行星齿轮传动系统在太阳轮与行星架扭转振动模式以及内齿圈横向振动模式所对应的固有频率位置出现了共振,并引起了较大的啮合力波动;在轻载下,齿轮副啮合状态发生了变化,出现了碰撞振动,随着负载的增加,接触力的变化呈现出强非线性特征,齿轮副脱啮时间逐渐缩短;当负载达到门槛值时,齿轮副不再脱啮;随着转速的提高,脱啮时间逐渐缩短,碰撞力波动幅值呈线性增大的趋势。该结果可为行星齿轮传动系统减振、降噪研究提供理论依据。  相似文献   

15.
针对行星齿轮减速器工作过程中传递功率的频繁变化容易导致其运动状态发生突变的问题,探讨行星齿轮传动系统随传递功率的分岔特性。基于2K-H 型行星齿轮传动系统纯扭转非线性动力学模型,采用CPNF(continuous Poincaré-Newton-Floquet)方法研究了传递功率对行星齿轮传动系统周期运动稳定性的局部精细分岔规律,运用直接数值积分的方法绘制了系统随功率的全局分岔图,并对两种仿真结果进行了对比。结果发现,在某些参数组合下,行星齿轮传动系统会共存几个稳定或不稳定的周期轨道;当功率在196~220 kW范围内,随着功率值的逐渐增大,行星齿轮传动系统的各种形态的周期轨道均是通过倍周期倒分岔的途径在相应功率分岔点处发生稳定性突变的;在轻载工况下(传递小功率),行星齿轮非线性系统容易呈现混沌运动状态。  相似文献   

16.
利用风机仿真软件(SWT),对某1.5 MW双馈式风力发电机齿轮箱的动态特性进行了研究。应用梁单元和超单元建立了齿轮箱参数化模型,对其进行了模态分析,将得到的固有频率与激励频率比较,确定不存在共振点;在考虑风剪切效应和塔影效应的基础上,建立了风机整机全耦合模型,得到了正常发电和紧急停机工况条件下齿轮箱系统的动态响应、齿轮啮合力和轴承受力情况。研究结果表明,风机齿轮箱的动态响应及动态载荷与其运行工况和外部风载荷密切相关,且各级齿轮的动态啮合力与齿轮轴的转矩有相同的变化趋势;行星轮轴承所受载荷最大,更容易发生损坏。研究结果为风力发电机齿轮箱传动系统的动态优化设计提供了理论依据。  相似文献   

17.
功率封闭机械式变速器齿轮寿命试验台   总被引:3,自引:0,他引:3  
研究功率封闭机械式变速器轮寿命试验台 方法利用定轴式齿轮,传动箱及弹性扭轴进行功率封闭;利用行星传动、谐波传动及计算机控制技术进行动态加减载。  相似文献   

18.
为了深入了解钢质行星齿轮传动系统引入塑料行星轮后的动态特性,建立了钢/塑齿轮组合行星传动的动力学分析模型和实验模型,对含塑料行星轮行星齿轮传动系统的动态特性进行了理论分析与实验研究,分析了塑料行星轮的引入对行星齿轮传动动态特性的影响。数值仿真与实验研究结果表明:塑料行星轮的引入对轮齿动态特性影响很大,显著地减小了太阳轮—行星轮和内齿圈—行星轮的啮合动载荷;显著地降低了行星齿轮传动系统的转子不平衡工频及其谐波振动、齿轮啮合振动及其谐波振动和高频带振动;在很大程度上降低了行星齿轮传动系统的振动强度。  相似文献   

19.
用连续小波灰度图诊断齿轮故障   总被引:1,自引:0,他引:1  
为了识别齿轮振动信号中的冲击性故障,利用连续小波变换对正常和故障齿轮的振动信号进行分析,将不同尺度下连续小波分解系数的绝对值用灰度图的方式表示出来,并利用特征矢量法估计信号功率谱进行验证,准确识别出了齿轮轴的不对中故障。分析结果表明,小波分析对信号具有多尺度分析能力,对振动信号中的冲击成分有很强的识别能力;连续小波变换灰度图不仅能直观反应齿轮的正常与故障状况,而且不会丢失冲击信号的时间信息,有利于寻找故障源,实现对齿轮故障的准确诊断。  相似文献   

20.
齿轮故障诊断中振动信号的提纯和重构   总被引:7,自引:0,他引:7  
在分析了齿轮振动产生机理和振动信号频谱特征的基础上 ,提出了齿轮振动信号提纯和重构的诊断分析方法 .与传统的窄带滤波相比 ,该方法可识别出齿轮啮合副中有故障的齿轮 .由于消除了 2个齿轮间的相互干扰 ,由该方法提纯重构信号的幅值包络、相位信息和瞬态频率 ,能更准确地反映出齿轮的故障 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号