首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为减轻洪水灾害事件可能带来的严重后果,实现对流量的及时、准确预测,提出一种基于时空特征挖掘的流量过程智能模拟方法.该方法首先从空间角度入手,建立测站之间的拓扑结构关系;再利用图卷积网络进行空间挖掘;最后利用门控循环单元进行时序挖掘.试验结果表明,基于时空特征挖掘的流量过程智能模拟方法比基于单一特征的模拟方法效果更好.  相似文献   

2.
为解决基于RNN(Recurrent Neural Network)的序列推荐模型在处理长序列时易出现梯度消失或爆炸从而导致推荐模型训练过程不稳定问题,在传统门控循环单元(GRU:Gated Recurrent Unit)基础上,引入了残差连接、层归一化以及前馈神经网络等模块,提出了基于深度残差循环神经网络的序列推荐模型DeepGRU。并在3个公开数据集上进行了验证,实验结果表明,该DeepGRU相较于目前最先进的序列推荐方法具有明显的优势(推荐精度平均提升8.68%)。消融实验验证了引入的残差连接等模块在DeepGRU框架下的有效性。并且,该DeepGRU有效缓解了在处理长序列时训练过程不稳定的问题。  相似文献   

3.
随着网络的不断普及,网络上的异常流量在不断加大,影响也随之增大,这对网络管理提出了更高的要求。本文对网络异常种类和异常流量给网络带来的影响进行了分析,最后总结了检测网络异常的几种方法。  相似文献   

4.
异常流量检测现有方法大都是基于有监督的学习,在现实生活中获取并标记异常流量数据样本是极为困难的,存在诸多限制.此外,由于网络异常数据的多样性和复杂性,各种检测方法的自适应性较差,对新出现的异常流量难以判断.针对上述问题,本文设计了一个基于生成对抗网络和记忆增强模块的半监督异常流量检测框架MeAEG-Net(Memory Augment Based on Generative Adversarial Network),通过只训练正常流量样本数据,比较生成器模块输入流量底层特征的重构误差来达到检测异常的目的.在模型中使用生成对抗网络来更好地训练生成器,生成器采用自编码器加解码器的结构来解决自编码器易受噪声影响的问题,并在自编码器子网络中添加记忆增强模块来削弱生成器模块的泛化能力,增大异常流量的重构误差.实验证明,本文提出的方法能在只学习正常流量数据样本的前提下达到很好的异常流量检测效果.  相似文献   

5.
为了有效识别工业网络环境中由多条异常数据共同组合的新型攻击,提出了一种基于深度强化学习的融合模型DQN-LSTM.该模型将流量数据的空间特征和时序特征相结合,展开异常检测.在公开的工控网络天然气工厂数据集上进行实验,DQN-LSTM模型在准确率和F1值上与SVM、CNN、LSTM、DQN等方法相比,本文模型的综合性能更好.  相似文献   

6.
针对当前工业互联网的攻击行为复杂,其网络数据具有海量、高维、时序性和非线性等特征,导致传统入侵检测方法的特征提取困难、检测率低、泛化能力差等问题,提出一种融合深度信念网络(deep belief network,DBN)和双向长短时记忆网络(Bi-directional long short-term memory,B...  相似文献   

7.
加密流量数据包之间具有明显的时序特征,现有方法很难提取出流量数据中隐含的时序特征,未能将时序特征与空间特征有效地融合,公开数据集大都存在类间样本不平衡的问题,给加密流量的准确分类带来巨大挑战.针对上述问题,提出了一种包含时空特征提取模块和难样本学习模块的卷积神经网络模型.时空特征提取模块先利用不同维度的卷积核来同步学习流量数据包序列中的时序和空间特征,再利用自适应加权融合策略将提取到的时空特征进行有效融合;难样本学习模块使用焦点函数让模型在训练过程中更偏向对困难样本的学习,进一步均衡不同类别的分类效果.实验结果表明:上述方法在ISCX VPN-nonVPN2016数据集和USTC-TFC2016数据集上的分类准确率分别达到了99.38%和99.46%,对不同类别流量分类结果的F1评价指标分别为99.04%和99.31%,与当前同类方法相比具有更优秀的识别性能.  相似文献   

8.
针对网络异常流量检测中大数据小异常造成的难题,提出了一种新的基于残差分析的网络异常流量检测方法。从多个角度提取网络流量的特征属性,以准确刻画正常行为和异常行为之间的差异性。利用提取的特征属性构建属性矩阵,采用流之间的相似性构建邻接矩阵。使用属性矩阵和邻接矩阵构建网络异常检测模型,采用CUR矩阵分解方法重构属性矩阵得到主模式,对属性矩阵和重构的属性矩阵进行残差计算进而获得残差矩阵。对残差矩阵中的每一个流计算其残差,根据每个流的残差和预设阈值进行异常判定。采集了西安交通大学校园网流量数据进行实验,实验结果表明:所提方法在不需要任何先验知识的情况下能够使异常检测率达到90%以上;与其他异常检测方法相比,所提方法不仅具有较高的检测率,而且能够实现异常源定位。  相似文献   

9.
针对时空显著性框架的融合问题,提出了一种基于剪切波融合的时空显著性检测算法。先获取视频帧的空间和时间显著图,再分别对空间和时间显著图进行剪切波分解,获取系数。采用一定的机制融合对应的剪切波系数和尺度系数,通过剪切波逆变换,得到综合显著图,实现了视频的时空显著性检测。结果表明,该算法能够较好地利用空间和时间显著图提供的信息,对显著对象内部区域的标注能力更强,同时对空间和时间显著图携带的噪声具有更好的鲁棒性。  相似文献   

10.
本文引入组合恶意加密流量数据集,结合随机森林对各个特征的重要性进行对比,构建可变长二维特征序列,提出一种针对可变长序列的恶意加密流量检测方法。该方法采用BiGRU-CNN深度学习模型,通过引入Masking层,有效解决变长序列问题,能够同时提取流量数据中时间和空间的多重特征,最终实现对恶意加密流量的二分类检测。实验结果表明,该方法与基于CNN、LSTM等单一模型相比在精确率、召回率和F1值均有所提升,准确率达到94.61%,且在非训练集实验中能达到94.93%的平均识别准确率,具有较好的应用价值。  相似文献   

11.
就所述的长短期记忆(LSTM)模型和DeepST-ResNet模型进行了研究分析,并基于西安滴滴出行的真实数据对相关模型进行对比实验,分析了各个模型的优劣,提出了建立更优模型的思路与展望.  相似文献   

12.
Obtaining comprehensive and accurate information is very important in intelligent traffic system (ITS). In ITS, the GPS floating car system is an very important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings and tunnels could affect the acquisition of traffic information and depress the system performance. Aiming at this problem, we developed a novel method employing a back propagation (BP) neural network to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, we can use the speed of its related road sections to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the speed of this road section estimated by our method is better.  相似文献   

13.
为减少信号传输质量和距离估计算法等因素对定位精度的影响,将深度学习应用于超宽带(ultra wide band,UWB)室内定位系统,利用门控循环单元(gated recurrent unit,GRU)网络代替传统UWB室内定位系统中的三边测量过程,以提高UWB室内定位精度。在得到定位标签到基站的距离信息后,将距离信息输入GRU网络中,输出最终位置坐标。GRU作为循环神经网络(recurrent neural network,RNN)的变种,既含有RNN处理时序数据的优势,又解决了RNN中的长程依赖问题。对GRU网络模型中不同学习率、优化器、批量大小、网络层数、隐藏神经元数量参数进行调整和训练。结果表明,基于GRU网络模型的UWB室内定位系统显著提高了定位精度,平均定位误差为6.8 cm。  相似文献   

14.
基于突变级数的网络流量异常检测   总被引:2,自引:0,他引:2  
针对网络流量发生异常时产生的突变特征,提出了一种基于突变级数的网络流量的异常检测方法.该方法首先计算网络流量的特征量,选择其中能显著性反映网络流量自相似性、非线性、非平稳性及复杂的动力学结构特性的特征量;然后将其作为突变理论的控制变量,利用蝴蝶突变模型的突变级数对网络流量异常进行检测.实验结果表明该方法具有较高的检测率和较低的误检率.  相似文献   

15.
针对目前交通标识视认性评测方法误差过大的缺点,提出了一种高精度交通标识视认性评测方法。该方法根据道路环境中不同因素对交通标识视认性的影响,计算了标志牌图像中的颜色特征、亮度特征、复杂度特征,并考虑标志牌背景的影响,计算了标志牌和背景之间的颜色对比特征、亮度对比特征和复杂度对比特征,综合考虑以上6种特征及特征相互之间的影响,利用自顶向下(top-down)和自底向上(bottom-up)视觉模型建立多特征融合的交通标识视认性评测模型。通过模型实现了对识别出的标志牌进行视认性评测,反馈模型推测的视认性值。通过实验对多特征融合的视认性评测模型的有效性及模型精度进行了评测。结果表明,该模型能够高精度推测标志牌视认性值,且达标率在89%以上。  相似文献   

16.
为了提高短时交通流预测精度,提出了基于互补集成经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)和门控循环单元(Gated Recurrent Unit, GRU)组合模型的快速路短时交通流预测方法。首先,运用互补集成经验模态分解算法,将非稳定的原始交通流时间序列数据分解为相对平稳的多个模态分量;然后,将分解后的模态分量分别建立GRU模型进行单步预测;最后,叠加每个分量的预测值,获取最终预测结果,并采用上海市南北高架快速路实测交通流数据进行实例验证。结果表明:CEEMD-GRU组合模型的预测效果明显优于GRU神经网络模型、EMD-GRU组合模型以及EEMD-GRU组合模型,平均预测精度分别提升了33.4%,25.6%和18.3%。CEEMD-GRU组合模型能够有效提取交通流数据特征分量,提高预测精度,为交通管控提供科学决策依据。  相似文献   

17.
在相关分析原理基础上,建立网络观测系统的模型,确定了网络流量的相关性特征,然后将多尺度相关分析方法引入系统检测中,提出了一种流量异常检测与定位方法。实验表明,与残差相关分析方法相比较,克服了干扰过多或者丢失信号细节成分两种不同性质的错误,该方法适合于突变信号的处理。  相似文献   

18.
随着时间的推移,网络协议流将出现不平衡的现象,经常出现不可预知的在线流量种类,传统在线流量分类模型无法对未知的流量种类进行分类,导致整体分类精度低,适应能力差。为此提出一种新的基于机器学习算法的在线流量分类方法,针对不同类别的在线流量样本流集合筛取出若干最近邻样本流,求出各个样本流特征权重,确定各个特征与类别的相关性,将相关性大的特征当成在线流量特征。依据得到的特征选取部分标识在线流量数据,确定K中值聚类的起始中心,构造映射关系,获取未知的在线流量种类。实验结果表明,所提方法有很高的分类精度,且扩展性和适应能力较强。  相似文献   

19.
暴力事件检测是视频内容智能分析的一个常见任务,在互联网视频内容审查、影视作品分析、安防视频监控等领域有重要应用.面向视频中暴力检测任务,提出了一个包含关系网络和注意力机制的方法来融合视频中的多模态特征,该方法首先使用深度学习提取视频中多个模态特征,如音频特征、光流特征、视频帧特征,接着组合不同的模态特征,利用关系网络来建模多模态之间的关系;然后基于深度神经网络设计了多头注意力模块,学习多个不同的注意力权重来聚焦视频的不同方面,以生成区分力强的视频特征.该方法可以融合视频中多个模态,提高了暴力检测准确率.在公开数据集上训练和验证的实验结果表明,提出的多模态特征融合方法,与仅使用单模态数据的方法和现有多模态融合的方法相比,具有明显的优势,检测准确率分别提升了4.89%和1.66%.  相似文献   

20.
传统方法针对多组传感器路径中的检测点,在很大程度上会出现若干存在差异的损伤发生概率,导致运动损伤检测不准确。为此,提出一种传感器信息融合的运动损伤检测方法。利用多帧帧间差的累积消除空洞效应,在此基础之上,融合传感器确定出准确的人体运动区域,以此对不同场景人体运动进行监测;采用小波分析法对监测结果的非平稳信号进行分析,得到运动损伤特征。将传感器信息融合和小波神经网络结合在一起,获取所有传感器的小波能量特征向量,按照最大概率密度函数值和特征向量获取融合运动损伤检测结果及损伤种类。实验结果表明,所提方法检测结果准确,实用性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号