首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

2.
P M Bayley  E J Manser 《Nature》1985,318(6047):683-685
In vitro assembly of microtubules from tubulin is considered to have an absolute requirement for added GTP (or a non-hydrolysable GTP-analogue) involving binding at the E(exchangeable)-site located on the beta-subunit of the tubulin dimer. By contrast, GDP inhibits assembly. Nucleotide hydrolysis has been implicated in the dynamic properties of microtubules, treadmilling and mechanical coupling. Here we demonstrate that assembly is not necessarily dependent on the presence of GTP at the E-site; microtubules can be formed efficiently in the absence of GTP in the presence of pyrophosphate. These microtubules, which have normal morphology and lability at cold temperatures, contain N(non-exchangeable)-site GTP and a significant proportion of E-site GDP. This demonstrates the possibility of direct incorporation of GDP-containing tubulin dimer during assembly which probably derives from microtubule-associated protein (MAP)-containing oligomers. This finding has important implications for the mechanism of microtubule elongation. The effects of pyrophosphate suggest that charge neutralization by the bidentate ligand is an essential step in promoting microtubule assembly, and that this interaction involves only a minimal conformational change in the protein.  相似文献   

3.
Lénárt P  Bacher CP  Daigle N  Hand AR  Eils R  Terasaki M  Ellenberg J 《Nature》2005,436(7052):812-818
Chromosome capture by microtubules is widely accepted as the universal mechanism of spindle assembly in dividing cells. However, the observed length of spindle microtubules and computer simulations of spindle assembly predict that chromosome capture is efficient in small cells, but may fail in cells with large nuclear volumes such as animal oocytes. Here we investigate chromosome congression during the first meiotic division in starfish oocytes. We show that microtubules are not sufficient for capturing chromosomes. Instead, chromosome congression requires actin polymerization. After nuclear envelope breakdown, we observe the formation of a filamentous actin mesh in the nuclear region, and find that contraction of this network delivers chromosomes to the microtubule spindle. We show that this mechanism is essential for preventing chromosome loss and aneuploidy of the egg--a leading cause of pregnancy loss and birth defects in humans.  相似文献   

4.
Direct observation of microtubule dynamics in living cells   总被引:42,自引:0,他引:42  
P J Sammak  G G Borisy 《Nature》1988,332(6166):724-726
The study of cell locomotion is fundamental to such diverse processes as embryonic development, wound healing and metastasis. Since microtubules play a role in establishing the leading lamellum and maintaining cell polarity, it is important to understand their dynamic behaviour. In vitro, subunits exchange with polymer by treadmilling and by dynamic instability. Disassembly events can be complete (catastrophic) or incomplete (tempered). In vivo, microtubules are in dynamic equilibrium with subunits with a half-time for turnover of 4-20 min. Microtubules grow by elongation of their ends and are replaced one by one with turnover being most rapid at the periphery. Although previous results are consistent with dynamic instability, we sought to directly test the mechanism of turnover. Direct observations of fluorescent microtubules in the fibroblast lamellum show that individual microtubules undergo rounds of assembly and disassembly from the same end. Reorganization of the microtubule network occurs by a tempered mode of dynamic instability.  相似文献   

5.
CENP-E is a putative kinetochore motor that accumulates just before mitosis.   总被引:57,自引:0,他引:57  
T J Yen  G Li  B T Schaar  I Szilak  D W Cleveland 《Nature》1992,359(6395):536-539
The mechanics of chromosome movement, mitotic spindle assembly and spindle elongation have long been central questions of cell biology. After attachment in prometaphase of a microtubule from one pole, duplicated chromosome pairs travel towards the pole in a rapid but discontinuous motion. This is followed by a slower congression towards the midplate as the chromosome pair orients with each kinetochore attached to the microtubules from the nearest pole. The pairs disjoin at anaphase and translocate to opposite poles and the interpolar distance increases. Here we identify CENP-E as a kinesin-like motor protein (M(r) 312,000) that accumulates in the G2 phase of the cell cycle. CENP-E associates with kinetochores during congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is likely to be one of the motors responsible for mammalian chromosome movement and/or spindle elongation.  相似文献   

6.
Tawk M  Araya C  Lyons DA  Reugels AM  Girdler GC  Bayley PR  Hyde DR  Tada M  Clarke JD 《Nature》2007,446(7137):797-800
The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.  相似文献   

7.
Assembly of microtubules at the tip of growing axons   总被引:26,自引:0,他引:26  
J R Bamburg  D Bray  K Chapman 《Nature》1986,321(6072):788-790
The growth of axons in the developing nervous system depends on the elongation of the microtubules that form their principal longitudinal structural element. It is not known whether individual microtubules in the axon elongate at their proximal ends, close to the cell body, and then move forward into the lengthening axon, or whether tubulin subunits are transported to the tip of the axon and assembled there onto the free ends of microtubules. The former possibility is supported by studies of slow axonal transport in mature nerves from which it has been deduced that microtubule assembly occurs principally at the neuronal cell body. By contrast, the polarity of microtubules in axons, which have their 'plus' or 'fast-growing' ends distal to the cell body, suggests that assembly occurs at the growing tip, or growth cone, of the axon. We have addressed this question by topically applying Colcemid (N-desacetyl-N-methylcolchicine), and other drugs which alter microtubule stability, to different regions of isolated nerve cells growing in tissue culture. We find that the sensitivity to these drugs is greatest at the growth cone by at least two orders of magnitude, suggesting that this is a major site of microtubule assembly during axonal growth.  相似文献   

8.
Proper positioning of the cell division plane during mitosis is essential for determining the size and position of the two daughter cells--a critical step during development and cell differentiation. A bipolar microtubule array has been proposed to be a minimum requirement for furrow positioning in mammalian cells, with furrows forming at the site of microtubule plus-end overlap between the spindle poles. Observations in other species have suggested, however, that this may not be true. Here we show, by inducing mammalian tissue cells with monopolar spindles to enter anaphase, that furrow formation in cultured mammalian cells does not require a bipolar spindle. Unexpectedly, cytokinesis occurs at high frequency in monopolar cells. Division always occurs at a cortical position distal to the chromosomes. Analysis of microtubules during cytokinesis in cells with monopolar and bipolar spindles shows that a subpopulation of stable microtubules extends past chromosomes and binds to the cell cortex at the site of furrow formation. Our data are consistent with a model in which chromosomes supply microtubules with factors that promote microtubule stability and furrowing.  相似文献   

9.
Nuclear envelope separates cell genome from cyto-plasm in eucaryotic cells and plays a pivotal role in the cell life. The nuclear envelope is composed of two jointed membranes, the inner membrane and the out membrane, embedded the nuclear pore complexes. The out membrane is continuous with the endoplasmic reticulum (ER). The ARTICLES inner membrane faces to and connects with the chromatin through the nuclear lamina, an intermediate filamentous network thought to play a structural role for…  相似文献   

10.
Mishima M  Pavicic V  Grüneberg U  Nigg EA  Glotzer M 《Nature》2004,430(7002):908-913
The bipolar mitotic spindle is responsible for segregating sister chromatids at anaphase. Microtubule motor proteins generate spindle bipolarity and enable the spindle to perform mechanical work. A major change in spindle architecture occurs at anaphase onset when central spindle assembly begins. This structure regulates the initiation of cytokinesis and is essential for its completion. Central spindle assembly requires the centralspindlin complex composed of the Caenorhabditis elegans ZEN-4 (mammalian orthologue MKLP1) kinesin-like protein and the Rho family GAP CYK-4 (MgcRacGAP). Here we describe a regulatory mechanism that controls the timing of central spindle assembly. The mitotic kinase Cdk1/cyclin B phosphorylates the motor domain of ZEN-4 on a conserved site within a basic amino-terminal extension characteristic of the MKLP1 subfamily. Phosphorylation by Cdk1 diminishes the motor activity of ZEN-4 by reducing its affinity for microtubules. Preventing Cdk1 phosphorylation of ZEN-4/MKLP1 causes enhanced metaphase spindle localization and defects in chromosome segregation. Thus, phosphoregulation of the motor domain of MKLP1 kinesin ensures that central spindle assembly occurs at the appropriate time in the cell cycle and maintains genomic stability.  相似文献   

11.
P J Lu  G Wulf  X Z Zhou  P Davies  K P Lu 《Nature》1999,399(6738):784-788
One of the neuropathological hallmarks of Alzheimer's disease is the neurofibrillary tangle, which contains paired helical filaments (PHFs) composed of the microtubule-associated protein tau. Tau is hyperphosphorylated in PHFs, and phosphorylation of tau abolishes its ability to bind microtubules and promote microtubule assembly. Restoring the function of phosphorylated tau might prevent or reverse PHF formation in Alzheimer's disease. Phosphorylation on a serine or threonine that precedes proline (pS/T-P) alters the rate of prolyl isomerization and creates a binding site for the WW domain of the prolyl isomerase Pin1. Pin1 specifically isomerizes pS/T-P bonds and regulates the function of mitotic phosphoproteins. Here we show that Pin1 binds to only one pT-P motif in tau and copurifies with PHFs, resulting in depletion of soluble Pin1 in the brains of Alzheimer's disease patients. Pin1 can restore the ability of phosphorylated tau to bind microtubules and promote microtubule assembly in vitro. As depletion of Pin1 induces mitotic arrest and apoptotic cell death, sequestration of Pin1 into PHFs may contribute to neuronal death. These findings provide a new insight into the pathogenesis of Alzheimer's disease.  相似文献   

12.
Microtubules are highly dynamic protein polymers that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro and in vivo, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40-60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells.  相似文献   

13.
The assembly of microtubules is essential for physiological functions of microtubules. Addition of microtubule-stabilizing reagents or microtubule "seeds" is usually necessary for plant tubulin assembly in vitro, which hinders the investigation of plant microtubule dynamics. In the present note, highly purified plant tubulins have been obtained from lily pollen, a non-microtubule-stabilizing reagent or microtubule "seed" system for plant tubulin assembly has been established and the analysis of plant tubulin assembly performed. Experiment results showed that purified tubulin polymerized in vitro, and a typical microtubule structure was observed with electron microscopy. The kinetics curve of tubulin assembly exhibited typical "parabola". The presence of taxol significantly altered the character of plant tubulin assembly, including that abnormal microtubules were assembled and the critical concentration for plant tubulin assembly was decreased exceedingly from 3 mg/mL in the absence of taxol to 0.043 mg/mL in the presence of taxol.  相似文献   

14.
Mechanism limiting centrosome duplication to once per cell cycle   总被引:1,自引:0,他引:1  
Tsou MF  Stearns T 《Nature》2006,442(7105):947-951
The centrosome organizes the microtubule cytoskeleton and consists of a pair of centrioles surrounded by pericentriolar material. Cells begin the cell cycle with a single centrosome, which duplicates once before mitosis. During duplication, new centrioles grow orthogonally to existing ones and remain engaged (tightly opposed) with those centrioles until late mitosis or early G1 phase, when they become disengaged. The relationship between centriole engagement/disengagement and centriole duplication potential is not understood, and the mechanisms that control these processes are not known. Here we show that centriole disengagement requires the protease separase at anaphase, and that this disengagement licences centriole duplication in the next cell cycle. We describe an in vitro system using Xenopus egg extract and purified centrioles in which both centriole disengagement and centriole growth occur. Centriole disengagement at anaphase is independent of mitotic exit and Cdk2/cyclin E activity, but requires the anaphase-promoting complex and separase. In contrast to disengagement, new centriole growth occurs in interphase, is dependent on Cdk2/cyclin E, and requires previously disengaged centrioles. This suggests that re-duplication of centrioles within a cell cycle is prevented by centriole engagement itself. We propose that the 'once-only' control of centrosome duplication is achieved by temporally separating licensing in anaphase from growth of new centrioles during S phase. The involvement of separase in both centriole disengagement and sister chromatid separation would prevent premature centriole disengagement before anaphase onset, which can lead to multipolar spindles and genomic instability.  相似文献   

15.
MOR1 is essential for organizing cortical microtubules in plants   总被引:56,自引:0,他引:56  
Microtubules orchestrate cell division and morphogenesis, but how they disassemble and reappear at different subcellular locations is unknown. Microtubule organizing centres are thought to have an important role, but in higher plants microtubules assemble in ordered configurations even though microtubule organizing centres are inconspicuous or absent. Plant cells generate highly organized microtubule arrays that coordinate mitosis, cytokinesis and expansion. Inhibiting microtubule assembly prevents chromosome separation, blocks cell division and impairs growth polarity. Microtubules are essential for the formation of cell walls, through an array of plasma-membrane-associated cortical microtubules whose control mechanisms are unknown. Using a genetic strategy to identify microtubule organizing factors in Arabidopsis thaliana, we isolated temperature-sensitive mutant alleles of the MICROTUBULE ORGANIZATION 1 (MOR1) gene. Here we show that MOR1 is the plant version of an ancient family of microtubule-associated proteins. Point mutations that substitute single amino-acid residues in an amino-terminal HEAT repeat impart reversible temperature-dependent cortical microtubule disruption, showing that MOR1 is essential for cortical microtubule organization.  相似文献   

16.
Weber KL  Sokac AM  Berg JS  Cheney RE  Bement WM 《Nature》2004,431(7006):325-329
Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule-actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle-F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.  相似文献   

17.
J Tabony  D Job 《Nature》1990,346(6283):448-451
Microtubules are believed to be the principal organizers of the cell interior. Cells respond to a variety of stimuli by modifying the spatial distribution of the microtubules. These effects are central to cell division and morphogenesis, and embryo development. During embryo development, macroscopic patterns are frequently observed. Here we report that microtubular solutions spontaneously form alternating white and dark stripes about 1 mm wide and 1 cm long. Small-angle neutron scattering measurements show that in each segment the microtubules are aligned obliquely to the direction of the stripe, and that the white and dark stripes differ in having mutually orthogonal orientations. The formation of these structures requires an initial reservoir of organic phosphate. Phosphorus NMR measurements show that the process is accompanied by the energy-liberating conversion of organic to inorganic phosphate. These observations, together with similarities to the dissipative spatial structure formed by the Belousov-Zhabotinski reaction, provide strong evidence that the observed structures are energy-dissipative in nature. Dissipative structures are thought to be critical to the appearance of complex living organisms. Our results strongly suggest that microtubules are capable of forming such structures. Microtubular dissipative structures may occur during mitosis and embryo morphogenesis.  相似文献   

18.
The assembly of microtubules is essential for physiological functions of microtubules. Addition of microtubule-stabilizing reagents or microtubule “seeds” is usually necessary for plant tubulin assemblyin vitro, which hinders the investigation of plant microtubule dynamics. In the present note, highly purified plant tubulins have been obtained from lily pollen, a non-microtubule-stabilizing reagent or microtubule “seed” system for plant tubulin assembly has been established and the analysis of plant tubulin assembly performed. Experiment results showed that purified tubulin polymerizedin vitro, and a typical microtubule structure was observed with electron microscopy. The kinetics curve of tubulin assembly exhibited typical “parabola”. The presence of taxol significantly altered the character of plant tubulin assembly, including that abnormal microtubules were assembled and the critical concentration for plant tubulin assembly was decreased exceedingly from 3 mg/mL in the absence of taxol to 0.043 mg/mL in ihe presence of taxol.  相似文献   

19.
Ramadan K  Bruderer R  Spiga FM  Popp O  Baur T  Gotta M  Meyer HH 《Nature》2007,450(7173):1258-1262
During division of metazoan cells, the nucleus disassembles to allow chromosome segregation, and then reforms in each daughter cell. Reformation of the nucleus involves chromatin decondensation and assembly of the double-membrane nuclear envelope around the chromatin; however, regulation of the process is still poorly understood. In vitro, nucleus formation requires p97 (ref. 3), a hexameric ATPase implicated in membrane fusion and ubiquitin-dependent processes. However, the role and relevance of p97 in nucleus formation have remained controversial. Here we show that p97 stimulates nucleus reformation by inactivating the chromatin-associated kinase Aurora B. During mitosis, Aurora B inhibits nucleus reformation by preventing chromosome decondensation and formation of the nuclear envelope membrane. During exit from mitosis, p97 binds to Aurora B after its ubiquitylation and extracts it from chromatin. This leads to inactivation of Aurora B on chromatin, thus allowing chromatin decondensation and nuclear envelope formation. These data reveal an essential pathway that regulates reformation of the nucleus after mitosis and defines ubiquitin-dependent protein extraction as a common mechanism of Cdc48/p97 activity also during nucleus formation.  相似文献   

20.
热处理对HeLa细胞微管影响的研究   总被引:2,自引:0,他引:2  
目的:用HeLa细胞作模型,研究热处理对肿瘤细胞微管的影响.方法:用不同温度(37°C、、40°C43°C和45°C)经不同时间(1h和2h)水浴处理培养的HeLa细胞后,分别即时用SABC法显示其微管.结果:与37°C相比,40°C处理后的HeLa细胞微管变化不大,43°C处理后,微管开始解聚,并随着作用时间的延长而加剧,45°C处理2h,微管组织中心消失.结论:高温能引起HeLa细胞微管呈现渐进式的解聚变化,微管组织中心具有较强的保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号