首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Voltage dependence of Na translocation by the Na/K pump   总被引:14,自引:0,他引:14  
M Nakao  D C Gadsby 《Nature》1986,323(6089):628-630
During each complete reaction cycle, the Na/K pump transports three Na ions out across the cell membrane and two K ions in. The resulting net extrusion of positive charge generates outward membrane current but, until now, it was unclear how that net charge movement occurs. Reasonable possibilities included a single positive charge moving outwards during Na translocation; or a single negative charge moving inwards during K translocation; or either positive or negative charges moving during both translocation steps, but in unequal quantities. Any step that involves net charge movement through the membrane must have voltage-dependent transition rates. Here we report measurements of transient, voltage-dependent, displacement currents generated by the pump when its normal Na/K transport cycle has been interrupted by removal of external K and it is thus constrained to carry out Na/Na exchange. The quantity and voltage sensitivity of the charge moved during these transient currents suggests that Na translocation includes a voltage-dependent transition involving movement of one positive charge across the membrane. This single step can thus fully account for the electrogenic nature of Na/K exchange. The result provides important new insight into the molecular mechanism of active cation transport.  相似文献   

2.
The effects of a new O-superfamily conotoxin, SO3, on sodium current (INa), transient A-type potassium currents (IA), and delayed rectified potassium currents (IK), were examined in cultured rat hippocampal neurons using the whole-cell patch clamp technique. Addition of SO3 caused a concentration-dependent, rapidly developing, and reversible inhibition of voltage-activated currents. The IC50 values for the blockage of INa, IA, and IK were calculated as 0.49, 33.9, and 7.6 μmol/L, respectively. The determined Hill coefficients were 1.7, 0.6, and 1.2, respectively. These results indicate that SO3 can selectively inhibit neuronal sodium and potassium currents.  相似文献   

3.
W Nonner  B C Spalding  B Hille 《Nature》1980,284(5754):360-363
Excitation of nerve or muscle requires an orderly opening and closing of molecular pores, the ionic channels, in the plasma membrane. During the action potential, Na channels are opened (activated) by the advancing wave of depolarisation, contributing a pulse of inward sodium current, and then are closed again (inactivated) by the continued depolarisation. As one approach both to obtaining molecular information on the Na channel and towards further defining the recently discovered kinetic interactions of the inactivation and activation gating steps, we have surveyed here the effects of chemical agents reported to slow or prevent Na channel inactivation. We find that many of the agents studied by others on invertebrate giant axons or vertebrate nerve act on our frog skeletal muscle preparation. In addition, we have discovered that simply lowering the intracellular pH nearly eliminates inactivation. The activation mechanism seems to resist modification.  相似文献   

4.
Posson DJ  Ge P  Miller C  Bezanilla F  Selvin PR 《Nature》2005,436(7052):848-851
Voltage-gated ion channels open and close in response to voltage changes across electrically excitable cell membranes. Voltage-gated potassium (Kv) channels are homotetramers with each subunit constructed from six transmembrane segments, S1-S6 (ref. 2). The voltage-sensing domain (segments S1-S4) contains charged arginine residues on S4 that move across the membrane electric field, modulating channel open probability. Understanding the physical movements of this voltage sensor is of fundamental importance and is the subject of controversy. Recently, the crystal structure of the KvAP channel motivated an unconventional 'paddle model' of S4 charge movement, indicating that the segments S3b and S4 might move as a unit through the lipid bilayer with a large (15-20-A) transmembrane displacement. Here we show that the voltage-sensor segments do not undergo significant transmembrane translation. We tested the movement of these segments in functional Shaker K+ channels by using luminescence resonance energy transfer to measure distances between the voltage sensors and a pore-bound scorpion toxin. Our results are consistent with a 2-A vertical displacement of S4, not the large excursion predicted by the paddle model. This small movement supports an alternative model in which the protein shapes the electric field profile, focusing it across a narrow region of S4 (ref. 6).  相似文献   

5.
The Na+/K+ pump, a P-type ion-motive ATPase, exports three sodium ions and then imports two potassium ions in each transport cycle. Ions on one side of the membrane bind to sites within the protein and become temporarily occluded (trapped within the protein) before being released to the other side, but details of these occlusion and de-occlusion transitions remain obscure for all P-type ATPases. If it is deprived of potassium ions, the Na+/K+ pump is restricted to sodium translocation steps, at least one involving charge movement through the membrane's electric fields. Changes in membrane potential alter the rate of such electrogenic reactions and so shift the distribution of enzyme conformations. Here we use high-speed voltage jumps to initiate this redistribution and show that the resulting pre-steady-state charge movements relax in three identifiable phases, apparently reflecting de-occlusion and release of the three sodium ions. Reciprocal relationships among the sizes of these three charge components show that the three sodium ions are de-occluded and released to the extracellular solution one at a time, in a strict order.  相似文献   

6.
Okuse K  Malik-Hall M  Baker MD  Poon WY  Kong H  Chao MV  Wood JN 《Nature》2002,417(6889):653-656
The tetrodotoxin-resistant sodium channel Na(V)1.8/SNS is expressed exclusively in sensory neurons and appears to have an important role in pain pathways. Unlike other sodium channels, Na(V)1.8 is poorly expressed in cell lines even in the presence of accessory beta-subunits. Here we identify annexin II light chain (p11) as a regulatory factor that facilitates the expression of Na(V)1.8. p11 binds directly to the amino terminus of Na(V)1.8 and promotes the translocation of Na(V)1.8 to the plasma membrane, producing functional channels. The endogenous Na(V)1.8 current in sensory neurons is inhibited by antisense downregulation of p11 expression. Because direct association with p11 is required for functional expression of Na(V)1.8, disrupting this interaction may be a useful new approach to downregulating Na(V)1.8 and effecting analgesia.  相似文献   

7.
The opening and closing of voltage-activated Na+, Ca2+ and K+ (Kv) channels underlies electrical and chemical signalling throughout biology, yet the structural basis of voltage sensing is unknown. Hanatoxin is a tarantula toxin that inhibits Kv channels by binding to voltage-sensor paddles, crucial helix-turn-helix motifs within the voltage-sensing domains that are composed of S3b and S4 helices. The active surface of the toxin is amphipathic, and related toxins have been shown to partition into membranes, raising the possibility that the toxin is concentrated in the membrane and interacts only weakly and transiently with the voltage sensors. Here we examine the kinetics and state dependence of the toxin-channel interaction and the physical location of the toxin in the membrane. We find that hanatoxin forms a strong and stable complex with the voltage sensors, far outlasting fluctuations of the voltage sensors between resting (closed) conformations at negative voltages and activated (open) conformations at positive voltages. Toxin affinity is reduced by voltage-sensor activation, explaining why the toxin stabilizes the resting conformation. We also find that when hanatoxin partitions into membranes it is localized to an interfacial region, with Trp 30 positioned about 8.5 A from the centre of the bilayer. These results demonstrate that voltage-sensor paddles activate with a toxin as cargo, and suggest that the paddles traverse no more than the outer half of the bilayer during activation.  相似文献   

8.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

9.
R Coronado  R Latorre 《Nature》1982,298(5877):849-852
The ionic currents underlying the cardiac action potential are believed to be much more complex than those in nerve. During the cardiac action potential, various membrane channels control the flow of K+, Na+, Ca2+ and Cl- across the sarcolemma of cardiac muscle cells. Thus, it has become increasingly clear that a detailed knowledge of the mechanisms that activate (or inactivate) heart channels is required to understand cardiac excitability. We report here the use of planar lipid bilayer techniques to detect and characterize K+ and Cl- channels in purified heart sarcolemma membrane vesicles. We have identified four different types of channel on the basis of their selectivity, conductance and gating kinetics. We present in some detail the properties of a K+ channel and a Cl- channel. We have tentatively identified the K+ channel with the ix type of current found in Purkinje, myocardial ventricular and atrial fibres. The chloride channel might be related to the transient chloride current found in Purkinje fibres.  相似文献   

10.
Single Na+ channel currents observed in cultured rat muscle cells   总被引:28,自引:0,他引:28  
F J Sigworth  E Neher 《Nature》1980,287(5781):447-449
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS.  相似文献   

11.
This study addressed the effects of Yb3+ on voltage-gated sodium currents in rat hippocampal neurons using the whole-cell patch-clamp technique. Voltage-clamp recordings in single neurons were filtered and stored in a computer. Yb3+ increased the amplitude of sodium currents in a concentration-dependent and voltage-dependent man- ner. The 50 % enhancement concentration of Yb3+ on sodium currents was about 8.97 μmol/L, which was dif- ferent from the inhibitory effects of Yb3+ on potassium current. The analysis on the activation and inactivation kinetics of Na+ current showed that 100 μmol/L Yb3+ did not change the process of activation and inactivation. In addition, the times reaching the peak of current (t) and inactivated time constant (τ) were voltage dependent. 100 μmol/L Yb3+ significantly prolonged the time to peak at -70 and -80 mV. The effect disappeared at the positive direction of -70 mV. Furthermore, Yb3+ decreased r val- ues to more positive values than -80 mV. In total, Yb3+ did not change the process of activation, but impelled inacti- vated process. Yb3+ mainly increased the Na+ current through changing its conductance. It might be one of the mechanisms that Yb3+ affected the hippocampal neurons.  相似文献   

12.
D W Hilgemann  D A Nicoll  K D Philipson 《Nature》1991,352(6337):715-718
Na+/Ca2+ exchange is electrogenic and moves one net positive charge per cycle. Although the cardiac exchanger has a three-to-one Na+/Ca2+ stoichiometry, details of the reaction cycle are not well defined. Here we associate Na+ translocation by the cardiac exchanger with positive charge movement in giant membrane patches from cardiac myocytes and oocytes expressing the cloned cardiac Na+/Ca2+ exchanger. The charge movements are initiated by step increments of the cytoplasmic Na+ concentration in the absence of Ca2+. Giant patches from control oocytes lack both steady-state Na+/Ca2+ exchange current (INaCa) and Na(+)-induced charge movements. Charge movements indicate about 400 exchangers per micron 2 in guinea-pig sarcolemma. Fully activated INaCa densities (20-30 microA cm-2) indicate maximum turnover rates of 5,000 s-1. As has been predicted for consecutive exchange models, the apparent ion affinities of steady state INaCa increase as the counterion concentrations are decreased. Consistent with an electroneutral Ca2+ translocation, we find that voltage dependence of INaCa in both directions is lost as Ca2+ concentration is decreased. The principal electrogenic step seems to be at the extracellular end of the Na+ translocation pathway.  相似文献   

13.
Männikkö R  Elinder F  Larsson HP 《Nature》2002,419(6909):837-841
Hyperpolarization-activated cyclic-nucleotide-gated (HCN) ion channels are found in rhythmically firing cells in the brain and in the heart, where the cation current through HCN channels (called I(h) or I(f)) causes these cells to fire repeatedly. These channels are also found in non-pacing cells, where they control resting membrane properties, modulate synaptic transmission, mediate long-term potentiation, and limit extreme hyperpolarizations. HCN channels share sequence motifs with depolarization-activated potassium (Kv) channels, such as the fourth transmembrane segment S4. S4 is the main voltage sensor of Kv channels, in which transmembrane movement of S4 charges triggers the opening of the activation gate. Here, using cysteine accessibility methods, we investigate whether S4 moves in an HCN channel. We show that S4 movement is conserved between Kv and HCN channels, which indicates that S4 is also the voltage sensor in HCN channels. Our results suggest that a conserved voltage-sensing mechanism operates in the oppositely voltage-gated Kv and HCN channels, but that there are different coupling mechanisms between the voltage sensor and activation gate in the two different channels.  相似文献   

14.
Voltage dependence of Na/K pump current in isolated heart cells   总被引:8,自引:0,他引:8  
D C Gadsby  J Kimura  A Noma 《Nature》1985,315(6014):63-65
The Na/K pump usually pumps more Na+ out of the cell than K+ in, and so generates an outward component of membrane current which, in the heart, can be an important modulator of the frequency and shape of the cardiac impulse. Because it is electrogenic, Na/K pump activity ought to be sensitive to membrane potential, and it should decline with hyperpolarization. However, such voltage dependence of outward pump current has yet to be demonstrated, one reason being the technical difficulty of accurately measuring pump current over a sufficiently wide voltage range. The whole-cell patch-clamp technique allows effective control of both intracellular and extracellular solutions as well as membrane voltage. Applying this technique to myocardial cells isolated from guinea pig ventricle, we have measured Na/K pump current between -140 mV and +60 mV, after minimizing passive currents flowing through Ca2+, K+ and Na+ channels. We report here that strongly activated pump current shows marked voltage dependence; it declines steadily from a maximal level near 0 mV, becoming very small at -140 mV. Pump current-voltage relationships will provide essential information for testing models of the Na/K pump mechanism and for predicting pump-mediated changes in the electrical activity of excitable cells.  相似文献   

15.
The principle of gating charge movement in a voltage-dependent K+ channel   总被引:9,自引:0,他引:9  
Jiang Y  Ruta V  Chen J  Lee A  MacKinnon R 《Nature》2003,423(6935):42-48
The steep dependence of channel opening on membrane voltage allows voltage-dependent K+ channels to turn on almost like a switch. Opening is driven by the movement of gating charges that originate from arginine residues on helical S4 segments of the protein. Each S4 segment forms half of a 'voltage-sensor paddle' on the channel's outer perimeter. Here we show that the voltage-sensor paddles are positioned inside the membrane, near the intracellular surface, when the channel is closed, and that the paddles move a large distance across the membrane from inside to outside when the channel opens. KvAP channels were reconstituted into planar lipid membranes and studied using monoclonal Fab fragments, a voltage-sensor toxin, and avidin binding to tethered biotin. Our findings lead us to conclude that the voltage-sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore.  相似文献   

16.
应用全细胞膜片钳技术记录急性分离的小鼠三叉神经节细胞电压门控性钠通道电流,观察白细胞介素-1β对河豚毒素敏感性钠电流的影响,拟从离子通道水平探讨白细胞介素-1β调节颜面部痛的分子机制.结果发现白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,低浓度白细胞介素-1β(1ng/mL和10ng/mL)抑制三叉神经节细胞河豚毒素敏感性钠电流锋值,其中1ng/mL白细胞介素-1β使河豚毒素敏感性钠通道半失活电压向超极化方向偏移,复活时间常数延长.高浓度白细胞介素-1β(100ng/mL)在给药即刻增强三叉神经节细胞河豚毒素敏感性钠电流锋值,使河豚毒素敏感性钠通道半激活电压向超极化方向偏移,而不影响其失活及复活特性.高、低浓度白细胞介素-1β对三叉神经节细胞河豚毒素敏感性钠电流锋值的效应具有可逆性特点.结果表明白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,可部分解释白细胞介素-1β双相调节痛觉的产生及对神经元的损害和保护双相效应.  相似文献   

17.
Sensory acuity and motor dexterity deteriorate when human limbs cool down, but pain perception persists and cold-induced pain can become excruciating. Evolutionary pressure to enforce protective behaviour requires that damage-sensing neurons (nociceptors) continue to function at low temperatures. Here we show that this goal is achieved by endowing superficial endings of slowly conducting nociceptive fibres with the tetrodotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 (ref. 2). This channel is essential for sustained excitability of nociceptors when the skin is cooled. We show that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs. In contrast, the inactivation properties of Na(v)1.8 are entirely cold-resistant. Moreover, low temperatures decrease the activation threshold of the sodium currents and increase the membrane resistance, augmenting the voltage change caused by any membrane current. Thus, in the cold, Na(v)1.8 remains available as the sole electrical impulse generator in nociceptors that transmits nociceptive information to the central nervous system. Consistent with this concept is the observation that Na(v)1.8-null mutant mice show negligible responses to noxious cold and mechanical stimulation at low temperatures. Our data present strong evidence for a specialized role of Na(v)1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.  相似文献   

18.
B K Krueger  J F Worley  R J French 《Nature》1983,303(5913):172-175
A voltage- and time-dependent conductance for sodium ions is responsible for the generation of impulses in most nerve and muscle cells. Changes in the sodium conductance are produced by the opening and closing of many discrete transmembrane channels. We present here the first report of electrical recordings from voltage-dependent sodium channels incorporated into planar lipid bilayers. In bilayers with many channels, batrachotoxin (BTX) induced a steady-state sodium current that was blocked by saxitoxin (STX) at nanomolar concentrations. All channels appeared in the bilayer with their STX blocking sites facing the side of vesicle addition, allowing us to define that as the extracellular side. Current fluctuations due to the opening and closing of single BTX-activated sodium channels were voltage-dependent (unit conductance, 30 pS in 0.5 M NaCl): the channels closed at large hyperpolarizing potentials. Slower fluctuations of the same amplitude, due to the blocking and unblocking of individual channels, were seen after addition of STX. Block of the sodium channels by STX was voltage-dependent, with hyperpolarizing potentials favouring block. The voltage-dependent gating, ionic selectivity and neurotoxin sensitivity suggest that these are the channels that normally underlie the sodium conductance change during the nerve impulse.  相似文献   

19.
R MacKinnon 《Nature》1991,350(6315):232-235
The voltage-activated K+, Na+ and Ca2+ channels are responsible for the generation and propagation of electrical signals in cell membranes. The K+ channels are multimeric membrane proteins formed by the aggregation of an unknown number of independent subunits. By studying the interaction of a scorpion toxin with coexpressed wild-type and toxin-insensitive mutant Shaker K+ channels, the subunit stoichiometry can be determined. The Shaker K+ channel is found to have a tetrameric structure. This is consistent with the sequence relationship between a K+ channel and each of the four internally homologous repeats of Na+ and Ca2+ channels.  相似文献   

20.
S H Heinemann  H Terlau  W Stühmer  K Imoto  S Numa 《Nature》1992,356(6368):441-443
The sodium channel, one of the family of structurally homologous voltage-gated ion channels, differs from other members, such as the calcium and the potassium channels, in its high selectivity for Na+. This selectivity presumably reflects a distinct structure of its ion-conducting pore. We have recently identified two clusters of predominantly negatively charged amino-acid residues, located at equivalent positions in the four internal repeats of the sodium channel as the main determinants of sensitivity to the blockers tetrodotoxin and saxitoxin. All site-directed mutations reducing net negative charge at these positions also caused a marked decrease in single-channel conductance. Thus these two amino-acid clusters probably form part of the extracellular mouth and/or the pore wall of the sodium channel. We report here the effects on ion selectivity of replacing lysine at position 1,422 in repeat III and/or alanine at position 1,714 in repeat IV of rat sodium channel II (ref. 3), each located in one of the two clusters, by glutamic acid, which occurs at the equivalent positions in calcium channels. These amino-acid substitutions, unlike other substitutions in the adjacent regions, alter ion-selection properties of the sodium channel to resemble those of calcium channels. This result indicates that lysine 1,422 and alanine 1,714 are critical in determining the ion selectivity of the sodium channel, suggesting that these residues constitute part of the selectivity filter of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号