首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
T型、N型圆管相贯节点滞回性能实验   总被引:3,自引:0,他引:3  
对T型、N型圆管平面相贯节点进行循环加载的拟静力实验,以研究两种节点的抗震性能,对象为单个足尺寸的相贯节点。在支管循环加载的过程中对主管施加固定轴向荷载。在主管壁产生局部屈曲后,背向加载支管一侧的主管壁上产生了斜向条纹。节点最终的破坏是主管只管交界处的焊缝根部的裂纹发展直至断裂。实验得到节点滞回特性曲线。能量分析表明,T型节点在受压半周的耗能能力与受拉半周相近,N型节点受压半周的耗能能力强于受拉半周。2个实验节点在循环荷载作用下均具有良好的塑性变形能力。  相似文献   

2.
为研究主方支圆高强钢管轻骨料混凝土有间隙K型节点的承载力,对支管间设置加劲板的节点和基本型节点进行了主管轴压静力加载试验,考察了加劲板和支主管偏心距对节点破坏模式和承载力等受力性能的影响.试验结果表明:与受拉支管相连的主管鼓起、支主管焊缝开裂、支管根部屈曲、加劲板焊缝开裂和加劲板屈曲是该类节点的典型破坏模式;受压支管和主管受压区内轻骨料混凝土未发生明显破坏,受拉支管和主管受拉区内轻骨料混凝土发生轻微破碎;加劲节点的屈服承载力和极限承载力较基本型节点分别提高43.4%~69.6%和25.9%~43.1%.基于有间隙K型节点试验破坏模式,推导了考虑加劲板应力传递效应和轻骨料混凝土约束效应的与受拉支管相连的主管凸曲承载力计算式和支主管焊缝开裂承载力计算式.  相似文献   

3.
焊接管节点结构的加固方法研究(英文)   总被引:1,自引:1,他引:0  
管节点结构中主管沿着径向的刚度通常要远小于支管的轴向刚度,因此破坏部位很容易发生在主管和支管相贯线附近的主管表面上.为了改善管节点的承载能力,有必要对其进行加固.本文介绍了几种加固方法,如内置加劲环加固、环口板加固、内置插板加固和主管壁厚加固等.根据一些相关的试验报道,采用有限元方法对几种加固方法进行了评价.  相似文献   

4.
为了研究十字形矩形钢管偏心相贯节点的平面外抗弯性能,进行了节点试验.根据试验的破坏特征建立了节点承载力的屈服线模型并推导出理论式,通过有限元参数分析对理论式进行改进,结合回归分析,建立节点平面外抗弯承载力的实用参数化计算式.结果表明:节点试验的破坏模式为主管表面屈服,节点承载力与主管截面高度和主管壁厚的平方成正比,支主管截面高度比对节点承载力的影响较大,支主管壁厚比和主管截面高宽比对节点承载力的影响较小,参数化计算式所得承载力与试验结果相差3.4%、与有限元结果的相差大多小于10%.  相似文献   

5.
为了实现分阶段耗能的目标,基于Q235钢和低屈服点钢2种不同耗能材料,设计了一种新型开孔式耗能装置.根据不同的耗能材料和抛物线开孔方式,构建了具有不同屈服位移的2种耗能钢板,继而组装成整体耗能装置,实现两阶段耗能目标控制.针对2种耗能钢板进行单调加载试验,考察了不同参数状态下单片耗能钢板的屈服机理,给出了单板模型试件的荷载-位移曲线、屈服位移和屈服荷载.对耗能装置开展低周反复加载试验,揭示其两阶段耗能机理与破坏模式,得到耗能装置的滞回曲线、骨架曲线、等效黏滞阻尼比和等效刚度退化曲线.试验结果表明,新型两阶段耗能装置的滞回曲线饱满,耗能性能优越稳定,分阶段耗能特点明显.  相似文献   

6.
采用有限元软件Abaqus建立了主管一端固定一端滑动,支管铰接,同时对主管和支管预先施加轴力的内置加劲环K型管节点有限元分析模型.研究采用内置加劲环的加强方法对遭受横向冲击荷载作用的K型管节点抗冲击性能的影响.分析结果表明:加劲环的存在显著减小了主管的局部凹陷和主支管相贯线处凹陷变形;增大了主支管的线刚度比,使支管变形增大;同时加劲环的加强作用对节点的最终能量耗散影响很小.  相似文献   

7.
为了研究方钢管竖向插板加强节点(IPT)的受压性能及承载机理,建立未加强及竖向插板加强节点的有限元模型,并采用已有试验结果验证有限元模型的准确性;完成45组IPT节点的受压性能参数分析,得到不同设计参数对节点受压性能的影响规律;最后分析竖向插板对节点的加强机理,提出插板的构造建议。研究结果表明:竖向插板最高可提升方钢管节点受压承载力115.9%;竖向插板加强节点的控制破坏形态有3种,即主管上、下翼缘屈服破坏,主管腹板屈曲破坏以及二者共同控制破坏;支管-主管宽度比、主管高厚比和插板长度对IPT节点受压性能影响显著;竖向插板对节点的加强机理包括2个方面,即插板扩大了主管上翼缘的屈服范围以及将支管轴向压力传递到主管下翼缘并引起主管下翼缘屈服。此外,对插板加强节点的适用范围及插板尺寸构造提出了设计建议。  相似文献   

8.
对两端简支 T 型铸钢节点在冲击荷载下的响应进行了非线性有限元分析,得到不同荷载参数下节点的冲击力时程曲线和变形时程曲线. 分析中将铸钢节点的变形分为主管管壁局部凹陷、主管整体弯曲和支管轴向变形三部分,通过计算得到三部分变形随冲击时间变化的规律及其所耗散的能量在节点总耗能中所占的比例. 结果表明:冲击动能相同时,冲击荷载和支管轴向变形的最大值与初始冲击速度有关,节点塑性耗能总量随主管径厚比的增大而增加,随主管长径比及主支管直径比的增大而减小. 当主管长径比较小时,支管变形大于主管变形. 支管与主管的直径接近时,节点的局部凹陷变形可以忽略.  相似文献   

9.
为了研究不同加载模式下的沥青混合料反射裂纹扩展行为,对复合小梁试件进行复合型和弯拉型破坏荷载试验以及不同应力比状态的疲劳试验,并基于数字图像相关技术(digital image correlation, DIC)观测反射裂纹萌生至扩展全过程,从裂纹宽度、裂纹扩展路径、裂纹扩展高度及疲劳反射裂纹扩展速率深入分析其扩展行为。结果表明:沥青混合料反射裂纹扩展行为经历微裂纹萌生、微裂纹发展阶段、微裂纹向宏观裂缝转变、宏观裂缝快速发展4个阶段。反射裂纹扩展由主裂纹扩展以及次裂纹扩展构成,且次裂纹扩展速率高于主裂纹。采用logistic函数对混合料疲劳反射裂纹扩展量进行拟合是可靠的。研究成果对于完善沥青路面设计及其耐久性评价具有重要意义。  相似文献   

10.
为研究采场老顶岩梁破断过程,将初始来压前后的采场老顶岩梁简化为固支岩梁与悬臂岩梁.采用花岗岩作为试验材料对采场初始来压和周期来压的老顶岩梁进行了试验模拟,结合自主研发的基于拉张破坏准则的有限元开裂包对岩梁破断进行了数值分析.结果表明:固支岩梁在均布载荷下,破坏过程分为两个阶段:裂纹首先在端部萌生阶段和岩梁中间区域裂纹萌生阶段;固支岩梁端部裂纹的扩展方向与岩梁的高度和长度比值有关,而中部裂纹扩展方向始终垂直于轴线方向;悬臂岩梁的裂纹只产生在端部,裂纹的扩展方向与岩梁的长度和高度的比值有关;随着固支岩梁的裂纹逐渐扩展,岩梁的固支部分减少,不平衡力增加,岩梁的裂纹扩展速度加快.  相似文献   

11.
采用含双平行裂纹的半圆盘有机玻璃模型,以落锤作为动态加载装置,对动态载荷下多裂纹介质的断裂行为进行了研究。研究结果表明:在动载作用下,含多裂纹的脆性材料的应力场与单一裂纹时的应力场有明显不同。多裂纹介质中裂纹尖端的应力场多为拉剪混合应力场,裂纹起裂多为I-II混合型裂纹,但当裂纹扩展以后,裂纹逐渐向拉伸破坏转变;在多裂纹介质中,当已有一条裂纹扩展时,邻近平行裂纹尖端的能量被释放,邻近平行裂纹尖端的应力集中程度也逐渐下降,说明扩展裂纹对相邻平行裂纹的起裂和扩展有一定的抑制作用;在动载作用下,多裂纹介质中裂纹的起裂韧度KI由2.86 MN/m2下降到1.95 MN/m2,说明多裂纹对介质的起裂韧度有影响。但当试件中有一条裂纹扩展后,邻近平行裂纹对扩展裂纹的传播韧度和扩展速度的影响逐渐减弱。  相似文献   

12.
压裂泵泵头体相贯线裂尖应力场及应力强度因子研究*   总被引:1,自引:1,他引:0  
压裂泵泵头体作为油气压裂工艺的中的关键装备,直接决定了压裂技术的成败,影响油气开采效率和经济效益。针对现有泵头体相贯线处的疲劳开裂失效现状,建立了泵头体有限元分析模型和不同初始长度的圆形裂纹断裂模型,通过分析裂尖应力场和应力强度因子的分布规律。结果表明:内压作用下,泵头体整体仍处于弹性区,只有裂纹面前方两侧的45°~70°区域进入塑性区。相贯线处的裂纹类型虽然为Ⅰ-Ⅱ-Ⅲ复合裂纹,但是仍然是I型裂纹主导,裂纹的起始位置位于两个内腔表面。不同裂纹长度,其应力强度因子分布规律基本一致;但是初始裂纹越长,裂纹越容易发生扩展。裂尖附近区域应力分布是影响裂纹起裂的关键因素,但泵头体两个相贯内腔半径也会影响裂纹起裂。通过分析泵头体裂尖应力场和应力强度因子,可以更好了解泵头体疲劳开裂原因和裂纹起裂位置,为泵头体的工程应用提供理论依据。  相似文献   

13.
透明类岩石内蕴裂纹扩展变形试验研究   总被引:2,自引:2,他引:0  
采用力学试验手段探究岩石受压情况下内部裂纹扩展贯通机理是了解岩石破坏失稳机制的重要手段。由于真实岩体内部裂纹无法直接观察其扩展过程,通过自行研制的透明类岩石材料在RMT-150B多功能全自动刚性岩石伺服试验机上进行单轴压缩力学试验,观察研究透明类岩石内部三维裂纹的扩展贯通机理。这一方法克服了真实岩体不透明的特点,更方便地观察岩体内部裂纹萌生扩展不同阶段的形状。通过对透明岩石内部布置不同长度和角度的裂隙,模拟不同长度和角度的原生节理裂隙对岩体破坏失稳的影响。研究结果表明:含预制裂纹的透明类岩石试件在压缩过程中三维裂纹的起裂扩展要比二维条件下复杂,大致经历了压密,弹性变形,裂纹扩展,脆性破坏四个阶段。含预制裂隙的试件其峰值强度和峰值轴向应变比完整试件均有明显降低,且预制裂隙的长度对峰值强度和峰值轴向应变的降低幅度有一定影响。试验成果无疑对分析真实岩体的破坏失稳机理有着重要的参考价值。  相似文献   

14.
为研究竖向拼缝对预制装配L形混凝土剪力墙抗震性能的影响,对3个剪跨比为2.15的足尺L形混凝土剪力墙试件进行了低周反复荷载试验。拼缝采用无筋键槽形式,其中2个装配试件的竖向拼缝位置不同,另1个是整浇对比试件。试验结果表明:竖向拼缝对墙体的裂缝发展有一定影响,试件的裂缝在发展至拼缝键槽处后,会错动至键槽的尖点后再继续发展;竖向拼缝对试件的水平承载力及破坏形态没有明显影响,但对试件的延性及耗能有显著的影响,2个装配试件的正向位移延性分别提高了0.2%和14%,负向位移延性提高了8%和14%,耗能能力提高了30%,但竖向拼缝的位置对于耗能能力的影响不大;穿过竖向拼缝的水平钢筋没有发生应变突增或提前屈服。  相似文献   

15.
自然界中的岩体含有大量的原生裂纹,这些裂纹在外载作用下扩展和相互贯通最终导致岩体失稳破坏。由于真实岩石为不透明材料,观察研究其原生裂纹的扩展演化机制十分困难。最新研制了一种新型材料;该材料透明度高,且具有很好的脆性和单轴压缩剪涨性,可以作为模拟岩石的相似材料,在该材料内部及表面预制裂纹,观察分析预制裂纹不同赋存方式对材料破坏机制的影响。试验中清晰观察到次生裂纹萌生扩展各个阶段的形状及预制裂纹不同的赋存方式对材料破坏模式的影响,以及表面预制裂纹赋存深度与试件强度和次生裂纹裂最终扩展宽度的关系。试验所得的成果对于研究真实岩体的破坏机制具有重要的参考价值。  相似文献   

16.
许多工程结构在服役过程中往往承受着复杂的多轴疲劳载荷和热力耦合作用,仅靠常温情况下的单周载荷来简化复杂多轴载荷状态的失效预测方法将不再适用。为研究2A12–T4铝合金的高温多轴疲劳失效规律,本实验在175℃环境温度下,选取等效Von-Mise应力幅值,通过间断式加载记录不同拉扭加载循环下的裂纹萌生与扩展情况,研究特定加载路径对裂纹萌生与扩展的影响。实验结果表明,相位差为0时,裂纹萌生方向沿MSSA平面;在相位差为45°时,裂纹萌生传播方向与最大切应力平面方向相近,最大切应力在裂纹萌生过程中起到主要作用;在λ=0.5、φ=0和λ=1.0、φ=0两种情况下,裂纹萌生初期沿着最大切应力平面方向传播,传播过程中存在第I阶段向第II阶段转变的过程;在λ=0.5、φ=45°和λ=1.0、φ=45°两种情况下,不存在明显的第I阶段向第II阶段转变的过程;对比4种加载方式下的疲劳裂纹萌生期与疲劳寿命比,发现切应力比重的增大加速裂纹的萌生过程,相位差的存在阻碍了裂纹的萌生过程。  相似文献   

17.
 应用ABAQUS 扩展有限元(XFEM)模拟了切槽炮孔定向断裂爆破时爆生裂纹沿切槽方向和非切槽方向的起裂、扩展和止裂。结果表明:切槽方向爆生裂纹的起裂时间比非切槽方向早10 μs;裂纹扩展速度较非切槽方向具有明显的阶段性,可分为加速扩展、失稳扩展和减速扩展3 个阶段;裂纹的止裂时间比非切槽方向晚60 μs。在裂纹扩展阶段,切槽方向在失稳扩展阶段爆生裂纹的平均速度为1343 m/s,非切槽方向爆生裂纹的平均速度为600 m/s,仅为切槽方向爆生裂纹平均速度的44%,说明切槽有利于爆炸能量释放,增加爆生裂纹的扩展速度。切槽方向和非切槽方向爆生裂纹扩展的平均距离分别为124 mm 和45 mm,说明切槽对爆生裂纹的扩展有明显的导向作用。XFEM 能够正确模拟切槽爆破爆生裂纹的扩展,具有广阔的应用前景。  相似文献   

18.
岩石单轴压缩下破坏失稳过程SEM即时研究   总被引:20,自引:1,他引:19  
通过在扫描电镜下进行单轴加载实验,即时观察分析岩石受力过程中微裂纹的萌生、扩展和贯通破坏的全过程,得到各试样的应力 应变曲线及其所对应的微结构变化的电镜照片·实验结果表明,岩石试件的变形与破坏过程可以分为裂纹压密、微裂纹萌生和扩展以及断裂破坏3个阶段;微裂缝首先在预裂缝周围的拉应力集中区产生,随着外载荷的增加不断扩展,最后形成与最大主应力方向平行的宏观断裂带·  相似文献   

19.
为研究节理频度对类岩石介质受冲击荷载作用时动态裂纹扩展行为的影响,借助新型数字激光动态焦散线实验系统进行了试验研究.结果表明:随着节理频度的增大,竖向裂纹起裂时的动态应力强度因子减小,但大于水平节理翼侧裂纹起裂时的应力强度因子;裂纹扩展至节理区域时,动态应力强度因子有一个交替震荡的过程,此过程持续时间随节理频度增大而延长;竖向裂纹从加载到起裂时间并不明显改变,但从起裂到试件贯通破坏的时间近似线性增长;竖向裂纹起裂后的速度随节理频度增大有所减小,但大于裂纹扩展通过节理区域后的速度.可见不同节理频度类岩石介质的裂纹扩展行为存在差异,为冲击荷载下岩石断裂破坏提供理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号