共查询到15条相似文献,搜索用时 93 毫秒
1.
基于新息协方差的自适应渐消卡尔曼滤波器 总被引:2,自引:0,他引:2
自适应渐消卡尔曼滤波采用渐消因子抑制滤波器的记忆长度,当系统模型和噪声模型建立不准确时,能够有效地抑制滤波器的发散。但是现有计算渐消因子的方法公式表达复杂,计算过程繁琐,不利于组合导航等一些实时的应用。针对这种情况,提出了一种利用新息协方差计算渐消因子的方法,通过渐消因子自适应地调整误差协方差,补偿不完整信息的影响。该方法计算量小,提高了滤波算法的可靠性。最后,仿真结果证明了该方法的有效性。 相似文献
2.
针对传统卡尔曼滤波器在模型失配和噪声时变情况下滤波精度下降甚至发散的问题,设计了一种新的多重渐消因子卡尔曼滤波算法。该算法通过一个基于渐消记忆指数加权的新息协方差估计器来计算新息协方差估计值,并依此引入多重渐消因子对预测误差协方差阵进行调整,使得各滤波通道具有不同的调节能力,克服了单渐消因子对多变量跟踪能力差的局限性,从而提高滤波算法的精度和鲁棒性。仿真和试验结果表明,新算法能有效抑制滤波器发散,其滤波精度和鲁棒性优于常规卡尔曼滤波与单渐消因子卡尔曼滤波,能够更好地满足工程应用的要求。 相似文献
3.
现有计算渐消因子的自适应卡尔曼滤波器得到的通常是标量渐消因子,从而导致各滤波通道具有相同的调节能力,不利于提高滤波精度。针对〖JP3〗该问题,提出了一种利用估计均方误差和新息协方差估计值来计算多重渐消因子的方法,通过一组并行工作的基于限定记忆指数加权的新息协方差估值器来计算渐消因子,并根据估计均方误差把渐消因子分配给各滤波通道,从而提高自适应卡尔曼滤波器整体性能,仿真结果证明了所提方法的有效性。 相似文献
4.
提出了适用于姿态测量的Kalman滤波渐消因子自适应估计算法,滤波中采用序贯处理的方法计算出每个量测量对应的渐消因子,在位置速度组合导航系统中,只有位置、速度的误差状态是直接可观测的,用序贯滤波处理计算得到的渐消因子对协方差阵中对应于位置和速度误差状态的对角元素进行自适应控制,抑制滤波发散,提高位置、速度和姿态的测量精度。半实物仿真表明,与原来的算法相比,修改后的方法不仅能够提供高精度位置、速度信息,而且还可以提供高精度姿态信息,其中航向误差在0.08°以下,俯仰和横滚误差在0.02°左右。 相似文献
5.
自适应卡尔曼滤波器渐消因子选取方法研究 总被引:32,自引:0,他引:32
分析了通过改变噪声和初始条件抑制Kalman滤波发散的方法,指出了造成Kalman滤波发散的原因和控制Kalman滤波发散的机理。推导了衰减记忆滤波方程并研究了衰减记忆滤波噪声阵和滤波初值的选取条件,分析了衰减记忆滤波条件下量测噪声阵遗忘因子权重变化的物理意义。给出了衰减记忆滤波不发散的自适应遗忘因子的新算法,仿真结果证明了所述方法的有效性。 相似文献
6.
针对基于压缩型扩展卡尔曼滤波(CEKF)的SLAM算法在状态增广和地图管理两方面的不足,提出了一种改进算法(ICEKF算法).读算法通过增广辅助系数矩阵即可快速完成状态增广,计算复杂度由O(N2)降低为O(NA),其中N和NA分别为全局和局部地图中的路标数.在地图管理上,ICEKF算法采用一种基于欧氏距离的局部地图动态选择方法,避免了CEKF算法对全局地图进行预先划分带来的路标分配等问题.仿真表明ICEKF算法在估计结果上与EKF算法具有一致的最优性,与CEKF算法相比计算量大大降低. 相似文献
7.
为使精密单点定位(precise point positioning,PPP)获得更短的收敛时间和更高的定位精度,多个导航系统的集成(例如北斗卫星导航系统(Beidou navigation satellite system,BDS)与全球定位系统(global positioning system,GPS)的组合)和更优的定位方法是两种可行选择。针对传统最小二乘(least square,LS)法解算孤立各历元观测量之间的关系以及扩展卡尔曼滤波(extended Kalman filter,EKF)解算先验信息不准的问题,在PPP中,运用自适应扩展卡尔曼滤波(adaptive extended Kalman filter,AEKF)对过程噪声进行调整,以达到对系统状态的最优估计。文章通过实测数据对算法进行了分析和验证,测试结果表明,与传统的EKF算法相比,基于AEKF算法的PPP收敛速度可提高9 min,定位精度可提高33.7%。 相似文献
8.
9.
针对基于"当前"统计模型的算法跟踪突发强机动目标性能下降的问题,提出了一种通过强机动自适应检测调整模型参数的改进算法。该算法利用残差统计距离的概率分布设置目标强机动的检测门限,根据目标的机动水平联合调整模型的机动频率、最大机动加速度以及滤波器增益,在保持"当前"统计模型跟踪算法对一般机动目标跟踪精度的前提下,增强了系统对突发强机动目标的自适应跟踪能力。仿真结果表明,该算法扩大了跟踪机动目标的动态范围,提高了跟踪性能。 相似文献
10.
基于模糊推理的自适应BP算法 总被引:8,自引:0,他引:8
BP网络是迄今为止应用最广泛的一种神经网络,但这种算法也存在着收敛速度慢、容易陷入局部极小点等问题.本文在标准BP算法的基础上提出一种改进BP算法,称之为自适应BP算法.这种自适应BP算法采用模糊规则动态调整学习参数,并且能在学习过程中和学习完成后通过隐节点调整算法优化网络结构,有比标准BP算法更好的收敛性和更好的泛化能力 相似文献
11.
基于自适应卡尔曼滤波盲多用户检测的新算法 总被引:3,自引:0,他引:3
研究在稳态的码分多址(code-divisionmultiple-access,CDMA)系统存在很强的抗多址干扰时,使多用户检测中的最优判决向量的估计保持较高的数值鲁棒性的算法。采用一种新的自适应卡尔曼滤波多用户检测算法估计CDMA系统多用户接收器的最优判决向量,高性能盲自适应多用户检测算法。通过仿真实验,可以看出,该算法收敛速度快、跟踪性能好、数值稳定性好。仿真实验表明,提出的方法能够有效抑制阵发性多用户干扰,具有很强的抗多址(multipleaccessinterference,MAI)干扰能力和较高的数值鲁棒性。 相似文献
12.
为了提高接收机自主完好性监测(receiver autonomous integrity monitoring, RAIM)算法对微小缓变伪距偏差的检测能力,提出一种基于抗差扩展卡尔曼滤波和外推-积累的RAIM方法。该方法结合了新息外推法和累积历元法在检测微小缓变伪距偏差上的优势,即在新息外推法的基础上,累加多个历元的检验统计量,来更有效地检测微小缓变伪距偏差;同时,利用抗差扩展卡尔曼滤波对偏差进行抗差处理,提高了定位精度。仿真结果表明,相比较于传统RAIM方法、新息外推法以及累积历元法,新的RAIM方法均提高了对微小伪距偏差正确检测的概率,缩短了对缓变伪距偏差的检测延时,且经过伪距偏差修正后定位精度提高。 相似文献
13.
基于自适应UKF算法的机载INS/GPS空中对准研究 总被引:5,自引:0,他引:5
在空中对准失准角不满足小角度假设的条件下,推导了一种新的机载INS/GPS大失准角空中对准的误差模型。将基于极大似然估计的自适应估计器与无迹卡尔曼滤波(unscented Kalman filter, UKF)算法相结合,修改自适应滤波算法中自适应参数的表达式。提出将自适应UKF算法用于非线性误差模型的空中对准方案中。仿真表明,自适应UKF算法能够克服噪声统计模型不准确对滤波结果的影响,失准角估计的精度好于UKF算法的精度。 相似文献
14.
基于修正的自适应平方根容积卡尔曼滤波算法 总被引:1,自引:0,他引:1
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCK... 相似文献
15.
This paper studies the consistency of the extended Kalman filter (EKF) for a kind of nonlinear systems. Based on the EKF algorithm, the authors propose the quasi-consistent EKF (QCEKF) as well as the tuning law for its parameters. The quasi-consistency of the proposed algorithm is proved. Finally, the feasibility of the algorithm is illustrated by the numerical simulation on an orbit determination example. 相似文献